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Abstract 
It is thought that quantum mechanics is the physical science describing the behavior of the electron in the micro 
world, e.g., inside a hydrogen atom. However, the author has previously derived the energy-momentum 
relationship which holds inside a hydrogen atom. This paper uses that relationship to investigate the relationships 
between physical quantities which hold in a hydrogen atom. In this paper, formulas are derived which hold in the 
micro world and make more accurate predictions than the classical quantum theory. This paper concludes that 
quantum mechanics is not the only theory enabling investigation of the micro world. 
Keywords: Einstein’s energy-momentum relationship, Dirac’s relativistic wave equation, Relativistic energy, 
Fine structure constant 
1. Introduction 
It is thought that quantum mechanics is the physical science describing the behavior of the electron in the micro 
world, e.g., inside a hydrogen atom. There is no difference of opinion on that point. However, is it impossible to 
investigate the micro world without quantum mechanics? 
The author has previously derived the energy-momentum relationship which holds inside a hydrogen atom. This 
paper uses that relationship to investigate the relationships between physical quantities which hold in a hydrogen 
atom. A comparison is also made between the values of physical quantities predicted by this paper, and the values 
predicted by the classical quantum theory developed by Bohr. In this paper, formulas are derived which hold in 
the micro world and make more accurate predictions than the classical quantum theory. 
2. Results Obtained Prior to this Paper 
Letting 2

0m c be the rest mass energy and p the momentum of an object or a particle existing in free space, 
Einstein’s energy-momentum relationship is given by the following equation: 

 ( ) ( )2 22 2 2 2
0 .mc c m c= +p

 
 (1) 

Here, 2mc is the relativistic energy. 
In contrast, the author has derived the following relationship for a bound electron in a hydrogen atom, which must 
take into account the Coulomb potential (Suto, 2011):  

 ( )22 2 2 2
re, e ,n nE c m c+ =p

  
1,2, .n = ⋅ ⋅ ⋅   (2) 

Here, re,nE  is the following relativistic energy of the electron, and the electron's energy is described on an absolute 
scale.  

 2 2
re, e re, ,n n nE m c E m c= + =    0.nE <  (3) 

Here, re,nm is the relativistic mass of the electron. In Equation (3), nE is the total mechanical energy of a hydrogen 
atom. The equation derived from classical quantum theory is following:  
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2 4 2 2
e e

2 2 2
0

1 1 1 ,
2 4 2n

m e α m cE
πε n n

 
= − ⋅ = − 

    
1,2, .n = ⋅ ⋅ ⋅   (4)  

Here, α is the fine structure constant as follows. 

 
2

0

.
4

eα
πε c

=


  (5) 

The author presented the following equation as an equation indicating the relationship between the rest mass 
energy and potential energy of the electron (Suto, 2009).  

  ( ) 2
e .V r m c= −Δ    (6) 

According to this equation, the potential energy of a bound electron in a hydrogen atom is equal to the reduction 
in rest mass energy of that electron. 
There is a lower limit to potential energy, and the range which energy can assume is as follows.  

 ( )2
e 0.m c V r− ≤ <    (7) 

Also, the following constraint holds regarding the relativistic energy Ere of the electron due to Equations (3) and 
(4) (here, the discussion is limited to the ordinary energy levels of the atom). 

 2 2
e re, e

1 .
2 nm c E m c≤ <   (8) 

The logic used when deriving Equation (2) can also be applied in the region of Equation (8). Therefore, the author 
previously pointed out that there is an 0n = energy level in a hydrogen atom, but that is a mistake (Suto, 2014a). 
Here, that will be corrected. 
Incidentally, it is known that the following formula can be derived from Equation (1). 

 
1/22

2
0 21 .vE m c

c

−
 

= − 
     

(9) 

If the same logic is applied to Equation (2), then the following formula can be derived. (See Appendix A) 

 
1/22

2 2
re re e 21 .vE m c m c

c

−
 

= = + 
     

(10)
 

Within a hydrogen atom, the mass of the electron decreases when the kinetic energy of the electron increases. That 
is, 0m m< in Equation (1), but in Equation (2) re, e.nm m<  
Next, when a Taylor expansion is performed on Equation (10),  

 
2 4

2
re e 2 4

31 .
2 8
v vE m c
c c

 
≈ − + 

 
  (11)

 
In the theory of Dirac, the energy levels of the hydrogen atom can be expressed with the following equation (Schiff, 
1968). 

 
2 4

2
e 2 4

31 .
2 2 4n

nE m c
n n k

  
= − − −      

α α    (12)

 
Thus this paper makes the following assumption, based on a comparison of Equations (11) and (12). 

 , 1,2, .nv α n
c n

=         = ⋅ ⋅ ⋅
  

(13) 

However, the velocity is taken to be the average velocity of the electron, in accordance quantum mechanics. Here, 
v on the left side was set to vn. There are also other reasons for assuming Equation (13). (See Appendix B) 
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In the classical quantum theory, the following quantum condition of Bohr plays an important role.  
 2 2 , 1,2, .n np πr πn n⋅ =         = ⋅ ⋅ ⋅  (14) 

However, in this paper Equation (13) is assumed instead of Equation (14). When this is done, the following re,nE
and nE can be derived from Equations. (10) and (13). 

1/ 22
2 2

re, re, e 2 2 1,2, .n n
nE m c m c n

n
 

= =  ,      = ⋅ ⋅ ⋅ + α
 (15) 

 
1/22

2
e 2 2 1 .n

nE m c
n α

  
 = − +     

(16)
 

nE of Equation (12) and re,nE of Equation (15) define an absolute quantity, which includes the electron’s rest mass 
energy. Whereas nE in Equations (4) and (16) express the reduction in rest mass energy of the electron. 
Also, if Equation (15) is substituted into Equation (2), 

 
1/ 22

e 2 2np m c
n

 
= . + 

α
α

 (17) 

From this, it is evident that Equation (2) has a structure like the following.  

 ( )
2 21/2 1/22 2 2

e e e2 2 2 2 .nm c m c m c
n n

      
   + =   + +         

α
α α

 (18) 

Equation (18) can also be written as follows.  

 ( ) ( )
2

2 2

re, re, e .n nm c m c m c
n

 + = 
 

α  (19) 

Incidentally, the energy of the electron in a hydrogen atom can be given not only by Equation (4) but also by the 
following formula. 

 
2

0

1 .
2 4

eE
πε r

= −  (20) 

Here, if 2
em c− is substituted for E in Equation (20), then the r where re 0E =  is 

 e .
2
rr =   (21) 

Here, er is the classical electron radius as follows. 

 
2

e 2
0 e

.
4

er
πε m c

=   (22) 

3. Formulas containing the Fine Structure Constant   
The following equation can be obtained from Equation (15).  

 
1/ 22 2

e
2

re,

.
n

m n
m n

 +=  
 

α  (23) 

If 1n = here,  

 
1/22 2

e re,1
2
re,1

.
m m

α
m

 −
=  

 
  (24) 

Incidentally, Equation (20) can also be written as follows.  
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2

2e e e
e

/ 21 .
2n

nn

r m c rE m c
rr

 
= − = −  

 
  (25) 

Also, the following formula for energy and momentum can be obtained from Equations (2) and (25).  

 2 2 e
re, e e

/ 21 .n n
n

rE m c E m c
r

 
= + = − 

 
  (26) 

 
1/ 22

e
e

/ 21 1 .n
n

rp m c
r

  
 = − − 
   

    (27) 

Furthermore, it is evident from Equations (23) and (26) that the following relationship holds. 

 
1/22

re, re, e
2 2 2

e e

/ 2 .n n n

n

E mn r r
m c n α m r

  −= = = + 
 (28) 

Here, ( )e / 2nr r−  is distance in the re0 E≤  region within the orbital radius nr  (In contrast, e / 2r  is distance in 

the re 0E ≤  region).  
When Equations (24) and (28) are taken into account, the following formula containing the fine structure constant 
is obtained.  

 
1/22

1

1 e

1 .
/ 2

r α
r r

  
 − = −   

  (29) 

Also, the following formula is obtained from Equation (28).  

 
1

re,e e e

e re, e

1 .
2 2

n
n

n

mr m rr
m m m

−
 

= = − −  
   (30) 

In quantum mechanics, r is an average value not a definitive value, and this paper follows that principle. 
Now, if a Taylor expansion is performed on the right side of Equation (15), 

 
1/ 2 1/ 22 2 2 4

2 2 2 2 4

31 1 .
2 8

n α α α
n α n n n

−
   

= + ≈ − +   +   
  (31) 

This yields,  

 
1/22 2 4 2

2 2 2 4 2

31 1 1 .
2 8 2

n α α α
n α n n n

   
− ≈ − − + ≈   +   

 (32) 

Based on this result, Equation (28),  

 
1/22 2

re,e
2 2 2 2

e e

/ 2 1 1 .
2

n n

n

mr E n α
r m m c n α n

 
= − = − = − ≈ + 

 (33) 

From this,  

 
2

2
e2 .

2n
αE m c
n

≈ −  (34) 

In the end, it is evident that Equation (4) is an approximation.  
Also, if nr is found from Equation (33), 
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11/ 22

e
2 21 .

2n
r nr

n α

−
  
 = −  +   

  (35)  

 
4. Formulas determined to be Approximations 
This section discusses the orbital radii and energy levels of a hydrogen atom derived by Bohr. 
1) Orbital radii of Bohr 
Dirac pointed out that there is a negative solution to Equation (1). Adopting the same viewpoint, there is a negative 
solution to Equation (2). To find the negative solution, it is necessary to create a quadratic equation for r. Thus, 
from Equation (28), 

 
2 2

e
2 2

/ 2 .n

n

r r n
r n α

 − =  + 
 (36) 

From this, the following quadratic equation is obtained.  

 
2 2 2 2 2

2 e
e2 2 0.

4n n
n α n α rr r r
α α

   + +− + =   
   

 (37) 

If this equation is solved for nr , 

 
1/222 2 2 2 2 2 2

2 e
e e2 2 2

1 4 .
2 4n

n α n α n α rr r r
α α α

       + + +  = ± −      
         

  (38) 

Rearranging this equation, 

 
1/212 2 2

e e2 2 2

1 11 1 1 1
2 2n

n n nr r r
α α α

−      
 = + ± + − +     
       

  (39a) 

 
1/22 2

e
2 21 1 1 .

2
r n α

α n

−    
 = + ± +   
     

 (39b) 

To begin, the positive solution is found first. (The positive solution is the solution found by Bohr.)  Letting nr
+  

be this solution, and performing Taylor expansion of Equation (39b), 

 
2 2 4

e
2 2 4

31 1 1
2 2 8n
r n α αr

α n n
+     

≈ + + −    
    

＋   (40a) 

 
2

2e e e
B2

3 3 .
4 4
r r n r a n

α
≈ + = +   (40b) 

In contrast, the radii nr  found by Bohr are given by the following equation. 

 
2

2 2 2e
B 0 2 2

e

4 ,n
rr a n πε n n

m e α
= = ⋅ =    1,2, .n = ⋅ ⋅ ⋅   (41) 

Here, Ba is the Bohr radius. If Equations. (40) and (41) are compared, it is evident that Equation (41) is an 
approximation.  
Next, the negative solution nr

−  of Equation (39b), 

 
2 2 4

e
2 2 4

31 1 1
2 2 8n
r n α αr

α n n
−     

≈ + − −    
    

＋  (42a) 



apr.ccsenet.org Applied Physics Research Vol. 9, No. 4; 2017 

12 

 
2

e e
2 .

4 16
r α r

n
≈ +   (42b) 

Since r−  converges to e / 4r , e / 4r  can be regarded as the radius of the atomic nucleus of a hydrogen atom (i.e., 
the proton). Here, 

 
1 2

e
1 1 1.0000133.

4 4
r αr

−
−   ≈ + = 
 

 (43) 

From this, it is evident that the negative orbital is located near the atomic nucleus. The author has pointed out that, 
if electron exist in this orbital, they will be a candidate for the dark matter whose real nature is currently unknown 
(Suto, 2017).  
2) Energy levels 
There are also positive and negative solutions for re,nE  in Equation (2). Here, the ordinary, known energies of a 
hydrogen atom are expressed as re,nE+ , nE + . Also, the negative energies are expressed as re,nE− , .nE−  
When this is done, the formulas for positive energies are as follows. 

 
1/22 2

2 2 2
re, e e e2 21 , 1,2, .

2n
α αE m c m c m c n
n n

−
+  

= + ≈ −         = ⋅ ⋅ ⋅ 
 

 (44) 

 
21/ 22 2 4

2 2 e
e e2 2 2 2 2

0

1 1 11 .
2 2 4n

n m eE m c m c
n n n

+
    
 = − ≈ − = − ⋅  +      

α
α πε

 (45) 

In contrast, the formulas for the negative solutions are as follows. 

 
1/22 2

2 2 2
re, e e e2 2 2 , 1,2, .

2n
n αE m c m c m c n

n α n
−  

= − ≈ − +         = ⋅ ⋅ ⋅ + 
   (46) 

 
1/22 2

2 2 2
e e e2 2 21 2 .

2n
nE m c m c m c

n n
−

  
 = − + ≈ − + +   

α
α

    (47) 

The following compares energies when n=1. 
Value predicted by Bohr Equation (4): 

 B,1 13.60569 eV.E = −    (48a) 

Value predicted by Dirac Equation (12): 

 D,1 13.60514919 eV.E = −     (48b) 

Value predicated by this paper Equation (16): 
 1 13.60514921 eV.E = −    (48c)  

The predictions of Dirac and this paper agree to the sixth digit after the decimal point.  
Incidentally, the Dirac’s relativistic wave equation can be written as follows 

 ( )2
e= j ji i cα βm c

t
∂ − ∇ +
∂

ψ ψ.   (49) 

The following form can be used as a matrix with four rows and four columns. 

  
0 σ 0

α β
σ 00

j
j

j

I
I

   
= =   −  

,    .     (50) 

Here, the following Pauli spin matrices and the unit matrix are used. 
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1 2 3

0 1 0 1 0 1 0
σ σ σ

1 0 0 0 1 0 1
i

I
i

−       
= = =       −       

 ,    ,   ,  =  .  

 

(51) 

In contrast, the author has derived the following equation (Suto, 2014b).  

  ( )2
ej ji i cα βm c

t
∂ ′− ∇ +
∂
 ψ= ψ.   (52) 

Where, 

 
0 σ

α
σ 0

j
j

j

i
i
 

′ =  
 

.

        

(53) 

Equation (52) must be solved in order to elucidate electron spin, or more complex phenomena. 
5. Discussion 
1) The radius r  where re 0E =  is e / 2r  due to Equation (21). Dirac predicted that the vacuum energy reE  
satisfies the relation 2

re e ,E m c< − but actually re 0E =  is the energy of the virtual electron-positron pair which 
make up the vacuum (see Fig. 1). Also, in quantum mechanics it is thought that atoms are more stable when 
electron energy is lower, but actually that is not the case. They are more stable as energy approaches closer to 

re 0E = . The relationship between r and Ere is summarized as follows.   

 2 2
e e re, e

1 .
2n nr r m c E m c+ +≤    ↔   ≤ <   (54a) 

  2 2e e
e re, e

1 .
4 3 2n n
r rr m c E m c− −< ≤    ↔   − < ≤ −  (54b) 

 2 2e
e e re e

1 1 .
3 2 2
r r r m c E m c≤ ≤    ↔   − ≤ ≤   (54c) 

 e
re 0.

2
rr E=   ↔  =    (54d) 

Equation (2) is applicable in the ranges of Equations (54a) and (54b). Equation (54a) is the region where an 
ordinary hydrogen atom electron exists. Also, in Equation (54b), there is a system of an electron with negative 
mass and a proton with positive mass. Also, as is clear from Equation (8), the electron cannot penetrate into the 
region of Equation (54c). Therefore, Ere in Equation (54c) is likely not the energy of the electron, but rather the 
energy of a virtual electron-positron pair making up the vacuum. However, the energy of a virtual particle pair is 
twice the energy of the virtual electron, and thus Equation (54c) can be rewritten as follows.  

 2 2e
e e vp e .

3
r r r m c E m c≤ ≤    ↔   − ≤ ≤   (55) 

There is no electron energy level in the region of Equation (54c), and thus the subscript n is omitted. Also the 
subscript vp on the energy indicates a virtual particle pair. 
Incidentally, potential energy does not exist in the region of Equation (54c). Therefore, if it is assumed that the 
energy-momentum relation holds for virtual particle pairs too, then that can be obtained by setting m0 equal to zero 
in Equation (1). That is, 

  2
vp vp vp .E m c p c= =   (56) 

Here, re,vpm  indicates the mass of the virtual particle pair, and vpp  indicates the momentum of the virtual particle 
pair.  
Dirac regarded the energy region of the vacuum to be as follows.  

 2
re e .E m c< −   (57) 

In this paper, in contrast, the energy region of the vacuum in a hydrogen atom is predicted to be Equation (55). 
2) The uncertainty principle is thought to be what guarantees the stability of the atom. According to the uncertainty 
principle, it is forbidden for the electron to approach the atomic nucleus ( )er r →  / 4  and for the momentum to 
approach zero ( )p  → 0 . However, the situation is different in the following domain. 
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 2e
e vp e .

2
r r r E m c< <    ↔   0 < <  (58) 

In this region, the momentum approaches zero as the virtual particle pair approaches er / 2 . That is,  

 e , .
2
rr p  →          →  0  (59) 

Also, taking an electron as an example, if the electron approaches the atomic nucleus in the region of Equation 
(54b), then the momentum approaches zero (this is clear from Equation (2)). That is,  

 e , .
4
rr p  →          →  0   (60) 

From this it is evident that the uncertainty principle is not a universal principle, and there are limits on its 
application. 
 

 
Fig. 1a            Fig. 1b 

Figure 1. Differences between Dirac's hole theory and the interpration in this paper  
 
In Dirac’s theory, when the γ-ray gives all of its energy to the virtual particles ( 2

e2 ,E m c= − i.e., 2
re eE m c= − ) 

comprising the vacuum around the atomic nucleus, a virtual particle acquires rest mass, and is emitted as an 
electron into free space, while the hole opened in the vacuum is the positron (Fig.1a).  
In the author’s interpretation, on the other hand, an electron-positron pair is created because a γ-ray with an energy 
of 1.022 MeV gives rest mass to a virtual electron-positron pair at the position e / 2r r=  (Fig.1b). Arrows show 
the change in particle energy. The end point of an arrow does not indicate the position where the particle was 
produced. 
6. Conclusion 
In this paper, the departure point is Equation (2), and from there the relationships between physical quantities 
holding in a hydrogen atom were clarified as far as possible. The following assumption and relationship were 
powerful at that time. 

 .nv α
c n

=   (13) 

 
1/22

re, re, e
2 2 2

e e

/ 2 .n n n

n

E mn r r
m c n α m r

  −= = = + 
 (28) 
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Also, in this paper, the following formulas were derived with higher precision than Bohr's Formula (4) for energy 
levels. 

 
1/22

2
re, e 2 2 .n

nE m c
n

 
= ±  + α

 (15) 

 2 e
re, e

/ 2 .n
n

n

r rE m c
r

 −= ±  
 

  (26) 

When Equation (28) is taken into account, it is evident that the right sides of the above two equations are all 
different expressions of 2

re, .nm c±  Also, in this paper, the following formula with precision higher than Bohr's 
Formula (41) was derived for the orbital radius.  

 
11/22

e
2 21 ,

2n
r nr

n α

−
  
 = −  +   

   1,2, .n = ⋅ ⋅ ⋅  (35) 

Just as with reE there are the following two solutions for this orbital radius. 

 2 2e e e
B2

3 3 , 1,2, .
4 4n
r r rr n a n n

α
+ ≈ + = +         = ⋅ ⋅ ⋅   (40b) 

 
2

e e
2 .

4 16n
r α rr

n
− ≈ +   (42b) 

Through this paper, it was possible to predict the values of physical quantities with greater accuracy than classical 
quantum theory by taking Equation (2) as a departure point. Due to the results obtained in this paper, the author 
believes that the correctness of Equation (2) has been demonstrated. The fact that the predictions of classical 
quantum theory are approximate values is already known. It is not the case that this paper has raised objections to 
quantum mechanics. 
This paper concludes that quantum mechanics is not the only theory enabling investigation of the micro world. 
Appendix A 
We consider the energy of the electron inside the hydrogen atom by referring to the logic given in textbooks 
(French, 1968). If the velocity of the electron is set 0 in Equation (2), then the following equation of Einstein can 
be derived.  

 re
e 2 .Em

c
=  (A1)  

Also, in classical mechanics,  

 e .pm
v

=   (A2)  

From these two equations, we obtain: 

 re .E vcp
c

=    (A3) 

The physical quantities of the electron in the hydrogen atom take discrete values, and thus if the subscript n is 
attached to the physical quantities on both sides of Equation (A3), then 

 re, .n n
n

E v
cp

c
=  (A4) 

Substituting ncp  in Equation (A4) for Equation (2) here, simplifying and using the + value, we obtain: 

 
1/ 22

2
re, e 21 .n

n
vE m c
c

−
 

= + 
 

 (A5) 

Appendix B 
In classical quantum theory, the hydrogen atom is explained using a model where an electron with negative charge 
rotates around a proton with positive charge due to the Coulomb attraction.  



apr.ccsenet.org Applied Physics Research Vol. 9, No. 4; 2017 

16 

If the atomic nucleus is assumed to be at rest because it is heavy, then the electron (charge e, mass me) is regarded 
as rotating at a speed v along a circular orbit with radius r, centered on the nucleus.  
The attraction which the electron receives from the proton is a central force, and the equation of motion can be 
expressed as follows. 

 
2 2

e
2

0

.
4

n

n n

e m v
πε r r

=   (B1) 

Also, the quantum condition which Bohr assumed is following. 
 2 2 .n np πr πn⋅ =    (B2) 
From Equations (B1) and (B2), 

 .nv α
c n

=   (B3) 
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