
PHYSICS ESSAYS 25, 4 (2012)

Theoretical prediction of the size of the proton and correction of the quantum
condition

Koshun Sutoa)

5-24, Oote-Town, Isesaki-City, 372-0048, Japan

(Received 19 October 2011; accepted 24 July 2012; published online 12 October 2012)

Abstract: This paper shows that the quantum condition that Bohr applied to the hydrogen
atom is an approximation. Also, as a result of calculations using a quantum condition newly
assumed in this paper, it was possible to obtain, in addition to the orbital radius derived by
Bohr, a physical quantity re/4, which is thought to be the radius of the proton. The electron is
thought to be an elementary particle that has no size, but if it is assumed that the electron has a
size, then this paper presents a value that is a strong candidate. If it is assumed that because the
mass of the electron is involved in the size of the proton, the mass of the proton is involved in
the size of the electron, then it becomes possible to predict the radius of the electron. If it is
assumed that the radii of the proton and electron have existed in a fixed state since before the
measurement of their size by experiment, then it becomes necessary to review quantum
mechanics. � 2012 Physics Essays Publication. [DOI: 10.4006/0836-1398-25.4.488]

Résumé: L’on montre ici que les conditions quantiques que Bohr appliquait à l’atome
d’hydrogène sont une approximation. Aussi, d’après le résultat des calculs utilisant les
conditions quantiques nouvellement supportées dans cet article, il est possible d’obtenir, en
addition du rayon orbital dérivé de Bohr, une quantité physique re/4, qui est vraisemblable-
ment le rayon du proton. On suppose que l’électron soit une particule élémentaire qui n’a pas
de taille, mais si l’on considère que l’électron a une taille, alors cet article présente une valeur
qui est une forte candidate. Si l’on suppose que, puisque la masse de l’électron est impliquée
dans la taille du proton, la masse du proton est impliquée dans la taille de l’électron, alors il
devient possible de prédire le rayon de l’électron. Si l’on suppose que les rayons du proton et
de l’électron ont existé dans un état fixe jusqu’à la mesure de leur taille par expérimentation, il
devient alors nécessaire de revoir les dynamiques quantiques.
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I. INTRODUCTION

In classical quantum theory, the hydrogen atom is
explained using a model in which an electron with
negative charge rotates around a proton with positive
charge due to the Coulomb attraction. If the atomic
nucleus is assumed to be at rest because it is heavy, then
the electron (charge e, mass me) is regarded as rotating at
a speed v along a circular orbit with radius r, centered on
the nucleus. The total mechanical energy of the moving
electron can be found from the sum of its kinetic energy
and potential energy. The attraction that the electron
receives from the proton is a central force, and the
equation of motion can expressed as follows:

mev
2

r
¼ 1

4pe0

e2

r2
: ð1Þ

Therefore,

1

2
mev

2 ¼ 1

2

1

4pe0

e2

r
: ð2Þ

In addition, the potential energy V(r) of the electron is

assumed to be zero when the electron is at rest at a position

infinitely far from the proton, and thus it becomes smaller

than that inside the atom and can be described as follows:

VðrÞ ¼ � 1

4pe0

e2

r
: ð3Þ

Because the right side of Eq. (2) is�1/2 times Eq. (3),

1

2
mev

2 ¼ � 1

2
VðrÞ: ð4Þ

Finally, the total mechanical energy E of the electron is

E ¼ 1

2
mev

2 þ VðrÞ ¼ � 1

2
mev

2: ð5Þ

Also, if this energy is expressed using potential energy, then

E ¼ 1

2
VðrÞ ¼ � 1

8pe0

e2

r
: ð6Þ

To explain that the energy of the electron inside the

atom assumes discrete states, Bohr thought in the

following way:a)koshun_suto129@mbr.nifty.com
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If an integral number of electron waves of wavelength

k is assumed to exist in the circumference 2pr,

2pr ¼ nk; ð7Þ

and the de Broglie relationship k¼ h/p is substituted for k
in this equation, then

pn � 2pr ¼ 2pn"; n ¼ 1; 2; . . . : ð8Þ

This is the quantum condition that Bohr assumed.

Next, if both sides of Eq. (2) are multiplied by r2 and

Eq. (8) is used, then

rn ¼
4pe0"

2

mee2
� n2 ¼ aBn

2; n ¼ 1; 2; . . . : ð9Þ

Here, the subscript n is affixed to r on the left side. aB is

the Bohr radius, and n is the principal quantum number.

Next, if Eq. (9) is substituted for rn in Eq. (6) and the

subscript n is affixed to E, too,

En ¼ �
1

2

1

4pe0

� �2
mee

4

"2
� 1
n2
¼ E1

n2
; n ¼ 1; 2; . . . :

ð10Þ

Above are the electron orbital radius and stationary state

energy inside the hydrogen atom, derived from classical

quantum theory. However, if a more rigorous calculation

is necessary, me must be replaced with the following

reduced mass:

l ¼ memp

me þmp
: ð11Þ

Incidentally, the reason Eq. (8) was used as the quantum

condition in classical quantum theory is that the

stationary state energy of the hydrogen atom can be

correctly derived by using it. There were no better

grounds than that. Therefore, Bohr did not prove that

the two sides of Eq. (8) are equal. He simply assumed that

they were equal.

If an electron that was at rest in free space is taken

into the atom, the electron will gain kinetic energy, but at

the same time, it will emit a photon with the same amount

of energy. These energies are provided by a reduction in

the potential energy of the electron. In a separate paper,

the author has shown that the potential energy of the

electron corresponds to the amount of reduction in rest

mass energy of the electron.1

If the amount of this reduction is expressed as

�Dmec
2, then

� Dmec
2 ¼ VðrnÞ ¼ 2En ¼ �ðKn þ "xÞ;

Kn ¼ "x: ð12Þ

(If multiple photons are emitted here, then "x is assumed

to express the total sum of the energies of the individual

photons. Also, kinetic energy is changed to K.) This

shows that the following inequalities hold for the kinetic

energy and potential energy of the electron inside the

hydrogen atom.

K � 1

2
mec

2: ð13Þ

�mec
2 � VðrÞ: ð14Þ

Incidentally, in quantum mechanics, the motion of

the electron inside the hydrogen atom cannot be

conceived as a classical motion but is really a standing

wave w so that jw*wj is symmetric and time independent

all around the proton. Hence, the charge distribution is

perfectly static (no classical motion). However, the

argument in this paper should have continued after Bohr

announced the classical quantum theory. Therefore, in

this paper, it is regarded as permissible to argue using the

classical quantum theory picture, without using complete

quantum mechanics.

II. ENERGY AND MOMENTUM OF AN ELECTRON
INSIDE THE HYDROGEN ATOM

The author has shown, in a separate paper that the

following relation holds between the energy and momen-

tum of an electron inside a hydrogen atom.2

E2
re;n þ c2p2n ¼ ðmec

2Þ2; n ¼ 1; 2; . . . : ð15Þ

Here, in this paper, the relativistic energy, Ere,n, for a

bound electron inside a hydrogen atom is defined as

below.

Ere;n ¼ mec
2 þ Kn þ VðrnÞ ð16aÞ

¼ mec
2 � 1

2
Dmec

2 ð16bÞ

¼ mec
2 þ En: ð16cÞ

If an electron is at rest at a position infinitely far from

a proton, the potential energy of that electron is zero.

However, even in that case, the electron has rest mass

energy of mec
2, and thus the exact energy of the electron is

given not by Eq. (10) but by Eq. (16c). From this, En can

be defined as follows:

En ¼ �ðmec
2 � Ere;nÞ: ð17Þ

Now, if Eq. (16c) is substituted for Eq. (15),

ðmec
2 þ EnÞ2 þ c2p2n ¼ ðmec

2Þ2: ð18Þ

Next, if the value of Eq. (10) is substituted for En in Eq.

(18), then the left side of Eq. (18) becomes as follows:

mec
2 � 1

2

1

4pe0

� �2
mee

4

"2
� 1
n2

" #2
þc2p2n

¼ mec
2 � e2

4pe0"c

� �2
mec

2

2n2

" #2
þc2p2n ð19aÞ

¼ ðmec
2Þ2 1� a2

2n2

� �2

þc2p2n: ð19bÞ
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From this, Eq. (18) becomes

ðmec
2Þ2 1� a2

2n2

� �2

þc2p2n ¼ ðmec
2Þ2: ð20Þ

Here, a is the fine-structure constant defined as follows:

a ¼ e2

4pe0"c
: ð21Þ

The following physical quantities can also be found from
Eq. (20):

Ere;n ¼ mec
2 1� a2

2n2

� �
; ð22Þ

En ¼ �
1

2
mec

2 a
n

� �2
; ð23Þ

where

pn ¼ mec

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

n2
� a4

4n4

r
ð24aÞ

¼ mec
a
n

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

4n2

r
: ð24bÞ

Incidentally, because a4¼ 2.836 3 10�9, if we now set a4/
4n4 ’ 0, Eq. (24a) can be written as

pn ’
amec

n
: ð25Þ

This pn can also be found using another method. The
following relationship exists between kinetic energy Kn

and momentum pn of an electron moving at a nonrela-

tivistic speed and having an energy level with a principal
quantum number n.

Kn ’
p2n
2me

: ð26Þ

By substituting the right side of Eq. (10) for Kn of the
above equation, we obtain the following:

1

2

1

4pe0

� �2
mee

4

"2
� 1
n2

’
p2n
2me

: ð27Þ

By doing so, we obtain

pn ’
1

4pe0

� �
mee

2

"
� 1
n
¼ amec

n
: ð28Þ

Next, we consider the energy of the electron inside the
hydrogen atom by referring to the logic given in
textbooks.3 If the velocity of the electron is set at zero

in Eq. (15), then the following equation of Einstein can be
derived:

me ¼
Ere

c2
: ð29Þ

Also, in classical mechanics,

me ¼
p

v
: ð30Þ

From these two equations, we obtain

cp ¼ Erev

c
: ð31Þ

The physical quantities of the electron inside the

hydrogen atom take discrete values, and thus if the

subscript n is attached to the physical quantities on both

sides of Eq. (31), then

cpn ¼
Ere;nvn

c
: ð32Þ

Substituting cpn in Eq. (32) for Eq. (15) here and

simplifying and using the þ value, we obtain

Ere;n ¼
mec

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2n=c

2
p : ð33Þ

Also taking into account the relationship in Eq. (29),

mre;n ¼
meffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ v2n=c
2

p : ð34Þ

Here, the following ca,n is defined by taking into account

Eq. (22) and Eq. (33):

ca;n ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ v2n=c
2

p ¼ 1� a2

2n2
¼ 1þ En

mec2
: ð35Þ

(The constant of proportionality in the Lorentz transfor-

mation is borrowed for c. Because this constant of

proportionality holds inside the atom, the ‘‘a’’ from

‘‘atom’’ is used as a subscript.)

When this is done, Eq. (33) and Eq. (34) can be

expressed as follows:

Ere;n ¼ ca;nmec
2 ¼ mec

2 1� a2

2n2

� �
: ð36Þ

mre;n ¼ ca;nme ¼ me 1� a2

2n2

� �
: ð37Þ

If the velocity of the electron inside the atom

increases, then the energy and mass of the electron

decrease. In addition, it can be predicted that the velocity

of light does not function as a limit velocity inside the

atom.

Incidentally, the relativistic energy in Eq. (33)

becomes as follows for the extremely small mn/c:

Ere;n ¼ mec
2 1þ v2n

c2

� ��1=2

’mec
2 1� 1

2

v2n
c2
þ 3

8

v4n
c4
þ � � �

� �
: ð38Þ

If mn/c is sufficiently small, this series can be approximated

with high precision by the first two terms. That is,

Ere;n ’mec
2 1� 1

2

v2n
c2

� �
¼ mec

2 � 1

2
mev

2
n: ð39Þ

Next, let us consider rn. If the subscript n is attached

to E and r in Eq. (6),
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En ¼ �
1

2

e2

4pe0rn
: ð40Þ

If this expression is combined with Eq. (23) using an equal
sign,

� 1

2

e2

4pe0rn
¼ � 1

2
mec

2 a
n

� �2
: ð41Þ

Then,

rn ¼
1

4pe0

e2n2

mec2a2
ð42aÞ

¼ aBn
2 ð42bÞ

¼ re
n

a

� �2
: ð42cÞ

Here, re is the classical electron radius as follows:

re ¼
1

4pe0

e2

mec2
: ð43Þ

III. PRESENTATION OF A NEW QUANTUM
CONDITION AND THEORETICAL PREDICTION OF
THE SIZE OF THE PROTON

When Bohr conjectured the quantum condition Eq.
(8), he regarded the wavelength, which appears in Eq. (7),
to be the same as the wavelength of the waves that
appears in de Broglie’s equation. However, according to
quantum mechanics, there is no actual reality to the waves
inside the atom. Bohr’s quantum condition appeared as a

hypothesis whose validity could not be logically proved.

In this paper, the orbital radius of the electron inside
the hydrogen atom was obtained in Eq. (42c), and the
formula for the momentum of the electron was obtained
in Eq. (24b). Therefore, let us substitute these values into

the left side of Eq. (8) and confirm whether or not this
quantum condition actually holds.

First, the left side of Eq. (8) is

pn � 2prn ¼ 2p
n2re
a2

amec

n2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � a2=4

q
ð44aÞ

¼ 2p
remec

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � a2=4

p
: ð44bÞ

Here,

remec

a
¼ e2

4pe0mec2
�mec

e2

4pe0"c

� ��1
¼ ": ð45Þ

Therefore,

pn � 2prn ¼ 2p"
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � a2=4

p
: ð46Þ

As is clear from Eq. (24b), regarding a2/4 ’ 0 means that
the approximation value amec/n is used as the value pn:

pn � 2prn ’ 2p
n2re
a2

amec

n
ð47aÞ

¼ 2pn": ð47bÞ

Due to the above considerations, it was possible to prove

that the quantum condition Eq. (8) is an approximation.

Incidentally, a more generalized quantum condition is
given not by Eq. (8) but by the following equation:I

pds ¼ 2pn": ð48Þ

Equation (46) is not what was presented as a quantum
condition to replace Eq. (48).

Next, let us discuss whether the new quantum

condition Eq. (46) can contribute to the development of
physics. First, from Eq. (18), we find pn as follows:

pn ¼
1

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2mec2En � E2

n

q
: ð49Þ

Equation (46) can also be expressed as

pn ¼
"
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � a2=4

p
rn

: ð50Þ

Substituting the value of Eq. (50) for momentum in Eq.

(49), we obtain

rn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2mec2En � E2

n

q
¼ "c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � a2=4

p
: ð51Þ

Here, substituting the right side of Eq. (40) for En, we

obtain

�2mec
2 � 1

2

� �
e2

4pe0rn
� � 1

2

� �2
e2

4pe0rn

� �2
" #

r2n

¼ "2c2 n2 � a2

4

� �
: ð52Þ

Solving for rn in this equation, we obtain the
following value:

rn ¼
1

4

e2

4pe0mec2
þ 4pe0"2

mee2
� n2 � pe0"

2a2

mee2
ð53aÞ

¼ 1

4

e2

4pe0mec2
þ 4pe0"2

mee2
� n2 � pe0"2

mee2
e2

4pe0"c

� �2

ð53bÞ

¼ re
4
þ aBn

2 � re
4

ð53cÞ

¼ aBn
2: ð53dÞ

In addition, Eq. (53c) can also be expressed as follows:

rn ¼
re
4
þ ren

2

a2
1� a2

4n2

� �
¼ re

n

a

� �2
;

n ¼ 1; 2; . . . : ð54Þ

Equations (9) and (53d) are mathematically the same

formula, but they differ in what they signify. In the
classical quantum theory, the proton is treated as a
material particle, and thus it is not possible to discuss the

Phys. Essays 25, 4 (2012) 491



distance from the surface of a proton that has size to the

orbital.

However, if Eq. (53d) is expressed like Eq. (54), then

the difference from Eq. (9) becomes clear. In Eq. (54), the

first term is the radius of the proton, and ren
2/a2 can be

interpreted as the distance from the surface of the proton

to the orbital of the electron (see Appendix). According to

this interpretation, the radius of the proton rp becomes

0.705 fm (where 1 fm¼ 10�15 m). The value recommended

by the Committee on Data for Science and Technology is

0.8768(69) fm, but recently experimental results have been

reported indicating that the proton is a little smaller.4

Also, values of 1.2 to 1.5 fm have been used until recently

in physics textbooks, and we feel it is possible to regard

the first term in Eq. (53c) as the radius of the proton.

Now, let us consider the first two terms of Eq. (53c).

The proton radius and orbital radius are both distances

measured from the center of the atomic nucleus.

Therefore, these are distances in coordinate space, not

in physical space, and up to re/4 from the center of the

proton, these two radii overlap. The third term in Eq.

(53c) signifies the operation of subtracting this overlap. If

the value amec/n for pn obtained from the previous

quantum condition in Eq. (8) is substituted into Eq. (49),

the following radius is obtained:

rn ¼
re
4
þ aBn

2: ð55Þ

The orbital of the hydrogen atom in this case

becomes larger than Eq. (9) by just the amount that was

added to the proton radius. However, the equation for

energy, Eq. (10), is not obtained even if the value of Eq.

(55) is substituted for rn in Eq. (40).

Generally it is thought that rn and En are dependent

on aB and E1, as is also evident from Eqs. (9) and (10).

However, in this paper, Eqs. (54) and (23) are taken into

account, and it is predicted that rn and En are related to re
and mec

2/2. Incidentally, the physical quantities that

determine the size of a proton are the electrical charge e

and the electron’s rest mass energy mec
2.

Referring to the idea that de Broglie used when he

predicted the existence of the matter wave, it becomes

possible to discuss the size of an electron, which is

considered a particle without extent.

In this paper, we have found that the mass of an

electron me is concerned in the size of a proton. Supposing

the mass of a proton mp is concerned in the size of an

electron, the radius of an electron rel is as follows:

rel ¼
1

4

e2

4pe0mpc2
¼ merp

mp
¼ 3:843 10�19 m: ð56Þ

If it is assumed that the radii of the proton and electron

have existed in a fixed state since before the measurement

of their size by experiment, then it becomes necessary to

review quantum mechanics.

According to the Copenhagen interpretation regard-

ed as the conventional one on quantum mechanics, the

microscopic particle, i.e., quantum, ‘‘behaves like a wave

until its position is observed. But the moment its position

is observed, its position as a particle is defined.’’

However, we have obtained the size of a proton by

calculation, not by experiment. This means that a proton,

a kind of quantum, is localized in a certain place as a

particle, even if the position is not defined by observation.

By the way, in the famous two-slit interference experiment

with an electron, the conventional interpretation is that

‘‘an indivisible electron behaves as if it had come through

both slits simultaneously.’’

However, this paper concludes as ‘‘although an

electron comes through either slit as a particle, the

probability distribution of electrons found by the detector

draws a pattern of interference in the end.’’

If the prediction of this paper is correct, the

Copenhagen interpretation ought to be revised.

IV. CONCLUSION

(1) In Bohr’s theory of the atom, the quantum

condition is for selecting the stationary state assumed for

electrons inside the hydrogen atom from the equations of

motion in classical mechanics, and Eq. (8) has previously

been regarded as correct. However, this paper has shown

that Eq. (8) is nothing more than an approximation, and

that more accurately, the following relationship holds:

I
pds ¼ 2pn"

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

4n2

r
¼ 2pn"

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rn � re=4

rn

s

¼ 2pn"

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

4

VðrnÞ
mec2

s
: ð57Þ

The reason the quantum condition in Eq. (8) became

an approximation is that in classical quantum theory, the

pn in Eq. (25), which is an approximate value, was used

instead of the pn in Eq. (24).

Finally, when Eqs. (8) and (57) are compared, it can

be concluded that Bohr’s quantum condition, Eq. (8), is

the quantum condition that holds when the nucleus of the

hydrogen atom is regarded as a point, and Eq. (57)

proposed by the author is the quantum condition that

holds when the size of the nucleus is taken into account.

(2) It was possible to find the orbital radius of the

hydrogen atom to replace Eq. (9) by applying the

quantum condition newly presented in this paper to Eq.

(18):

rn ¼ aBn
2 ¼ re

4
þ ren

2

a2
1� a2

4n2

� �
¼ re

n

a

� �2
;

n ¼ 1; 2; . . . : ð58Þ

The term re/4, which is newly added to Eq. (54), is

predominantly considered to be related to the atomic

nucleus, or in other words, the proton radius. The radius

of the proton rp is as follows:

rp ¼
re
4
¼ 0:705310�15 m ¼ 0:705 fm: ð59Þ
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If Eq. (15) had been discovered in the era when Bohr

developed classical quantum theory, then Bohr, too,

would likely have derived Eq. (58) rather than Eq. (9) as

the orbital radius of the hydrogen atom.

However, as is clear when Eq. (9) and Eq. (58) are

compared, the distance to each orbital from the center of

the nucleus is the same in both equations, and thus the

energy values derived from Eq. (58) perfectly match the

values derived by Bohr Eq. (10).

This paper has shown that the size of the nucleus of

the hydrogen atom can be derived based on classical

considerations predating the advent of quantum mechan-

ics. However, that does not mean that this paper claims,

based on Eq. (58), that the electron in the hydrogen atom

moves in a classical orbital. In addition, the author would

like to emphasize that even though this paper does not use

quantum mechanics, it is not being claimed that atomic

structure can be accounted for based just on classical

theoretical argument.

APPENDIX

This appendix provides a more detailed explanation.

First, the relativistic mass of an electron mre,n is

defined as follows by referring to Eq. (16c):

mre;n ¼
Ere;n

c2
¼ 1

c2
ðmec

2 þ EnÞ: ðA1Þ

If this is used to find p2n from Eq. (18), the result is

p2n ¼ ðm2
e �m2

re;nÞc2: ðA2Þ

In addition, Kn can be defined using the following

equation:

Kn ¼ �En ¼ ðme �mre;nÞc2: ðA3Þ

The following relationship can be derived from these

two equations:

Kn ¼
p2n

me þmre;n
: ðA4Þ

However, the following relationship holds in classical

dynamics:

K ¼ p2

2m
¼ 1

2
mv2: ðA5Þ

Here, let us explain the reason why Eqs. (A4) and

(A5) are different.

First, the following equation can be derived from Eq.

(24):

p2n ¼ ðmecÞ2
a2

n2
� a4

4n4

� �
ðA6aÞ

¼ amec

n

� �2
1� a2

4n2

� �
: ðA6bÞ

Equation (37) can be rewritten as follows:

me þmre;n ¼ 2me �
a2me

2n2
¼ 2me 1� a2

4n2

� �
: ðA7Þ

Taking into consideration Eqs. (A6b) and (A7), the right

side of Eq. (A4) is as follows:

p2n
me þmre;n

¼ ðamec=nÞ2ð1� a2=4n2Þ
2með1� a2=4n2Þ ¼ ðamec=nÞ2

2me

¼ a2mec
2

2n2
¼ �En ¼ Kn:

ðA8Þ

Here, Eq. (A4) can be derived by canceling out the term (1

– a2/4n2) in the numerator and the denominator.

Incidentally, with Bohr’s model of the atom, the

theory was constructed by regarding the atomic nucleus

as a point. This corresponds to setting a2/4n2 to zero on

the right side of Eq. (A6b). If approximation is done here

in this way, then Eq. (A6a) becomes

p2n ’
amec

n

� �2
¼ a2mec

2

2n2
� 2me ¼ 2meKn: ðA9Þ

Thus,

Kn ’
p2n
2me

: ðA10Þ

The above considerations show that the correct equation

is Eq. (A4).

Here, let us compare the Bohr radius Eq. (9) with the

atomic nucleus of the hydrogen atom found in this paper,

i.e., with the radius of the proton Eq. (54).

re
4
� 1
rn
¼ 1

4
� e2

4pe0mec2
� mee

2

4pe0"2
� 1
n2

¼ 1

4

e2

4pe0"c

� �2

� 1
n2

¼ a2

4n2
: ðA11Þ

From this, the following relationship can be derived:

1� a2

4n2
¼ 1� re

4rn
¼ rn � re=4

rn
: ðA12Þ

Also, taking Eq. (50) into consideration,

pnrn
n"

� �2
¼ 1� a2

4n2
¼ rn � re=4

rn
: ðA13Þ

If Eq. (35) is also taken into consideration, then we can

derive the following relationship:

1� a2

4n2
¼ 1þ En

2E0
¼ 1þ VðrnÞ=4

mec2
: ðA14Þ

Finally, if the new quantum condition Eq. (46) is

extended, so it can be applied not only to the circular
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orbital but also in the case of the elliptical orbital, then it

can be expressed asI
pds ¼ 2pn"

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rn � re=4

rn

s
: ðA15Þ

With the r in Eq. (3) and the orbital radius of the
electron rn, the distance from the center of the atomic

nucleus to the classical electron orbital becomes a

problem. In contrast, as is clear from the rn – re/4 in

Eq. (A13), it can be predicted that the distance from the

surface of the atomic nucleus to the electron orbital is

involved in the angular momentum of the electron.
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