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Abstract: The only velocity addition law currently regarded as correct is that for the special theory

of relativity. However, this paper concludes that there is a justification for the existence of velocity

addition laws derived from the standpoint of Lorentz, who had doubts about the special theory of

relativity. The velocity addition laws presented in this paper are not new, and are equations which

are easy to understand in terms of common sense. Aside from the velocity addition law in the

special theory of relativity, there are also velocity addition laws which match experimental results.
VC 2014 Physics Essays Publication. [http://dx.doi.org/10.4006/0836-1398-27.2.191]

Résumé: La seule loi d’addition des vitesses actuellement considérée comme correcte est celle de

la théorie de la relativité restreinte. Toutefois, cet article conclut qu’il existe une justification de

l’existence de lois d’addition des vitesses obtenues d’après le point de vue de Lorentz, qui avait des

doutes quant à la théorie de la relativité restreinte. Les lois d’addition des vitesses présentées dans

cet article ne sont pas nouvelles, et les équations qui les expriment sont faciles à comprendre en

termes intuitifs. Outre la loi d’addition des vitesses de la théorie de la relativité restreinte, il existe

donc des lois d’addition des vitesses en accord avec les résultats expérimentaux.
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I. INTRODUCTION

At the end of the 19th century, Michelson and Morley tried

to detect the motion of the earth relative to the ether,1 which

was thought at that time to be in a state of “absolute rest.”

However, they were unable to detect the expected result.

To explain this experimental result, the physicists of the

time developed the following interpretations:

(1) Michelson’s interpretation: The reason why the

expected result was not detected in the experiment is

that the ether is stationary relative to the moving earth

(i.e., the ether is moving together with the earth).

(2) Lorentz’s interpretation: The reason why the ether

could not be detected even though it exists is because

the length of the earth contracts by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðv=cÞ2

q
times

in the direction of motion.2

(3) Einstein’s interpretation: If the ether does not exist,

then light propagates isotropically relative to the light

source, and thus the experimental result is what one

would expect.

Against this background, Einstein announced the special

theory of relativity (STR). At that time, Einstein assumed the

“principle of relativity” and the “principle of the constancy

of the speed of light.”

However, the latter includes the following two principles:

“Any ray of light moves in the “stationary” system of

coordinates with the determined velocity c, whether the ray

be emitted by a stationary or by a moving body.”3

“Let a ray of light start at the “A time” tA from

A towards B, let it at the “B time” tB be reflected at B

in the direction of A, and arrive again at A at the “A time”

t0A.

In agreement with the experience, we further assume the

quantity

2AB

t0A � tA

¼c;

to be a universal constant-the velocity of light in empty

space.”4

In this paper, we distinguish between the former princi-

ple as the “principle of the constancy of the speed of light I”

and the latter principle as the “principle of the constancy of

the speed of light II.” (These are abbreviated below as

“principle I” and “principle II.”)

“Principle I” asserts that the speed of light does not

depend on the speed of the light source. “Principle II” asserts

that the speed of light calculated from the round-trip travel

time is constant. Therefore, if “principle I” is taken into

account, it is impossible to say with certainty based on

“principle II” that the one-way speed of light is c.

Next, let us summarize the approaches of different phys-

icists regarding the outward propagation of light.

“Isotropic propagation of light EM”: Propagation of light

predicted by Einstein and Michelson. (“E” stands for Ein-

stein, and “M” for Michelson. This approach is abbreviated

below as “propagation EM.”) In this paper, a “classically sta-

tionary system” is defined as a system in which light propa-

gates isotropically in the absolute sense.a)koshun_suto129@mbr.nifty.com
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“Anisotropic propagation of light L”: Propagation of

light predicted by Lorentz. An observer in a stationary sys-

tem applies “principle I” to the propagation of light in a

moving system. At this time, an observer in the moving

system determines that propagation of light in his own coor-

dinate system is anisotropic. (“L” stands for Lorentz. This

approach is abbreviated below as “propagation L.”)

“Principle of the constancy of the speed of light E”:

Even if “propagation L” holds in a coordinate system, if the

times of two clocks are synchronized within that coordinate

system, then the propagation of light in this coordinate

system will be isotropic in the relativistic sense. (This is not

isotropic propagation in an a priori, absolute sense.) Also,

the one-way speed of light will be measured as c.

As a result, all inertial systems will be equivalent, and

the debate regarding identification of “propagation EM” and

“propagation L” will come to an end. Einstein conceived of

a new principle, the “principle of the constancy of the speed

of light E,” which integrates these two types of propagation,

and introduced that principle to physics. (This approach is

abbreviated below as “principle E.”) In this paper, a

“relativistically stationary system” is defined as a system in

which light propagates isotropically in the relativistic sense.

Einstein himself did not develop the above categories

and names. The categories were developed for this paper to

clarify Einstein’s approach.

According to the STR, it is impossible to experimentally

distinguish “propagation EM” and “propagation L.”

Therefore, for Einstein, making such a distinction was

meaningless.

However, in another paper,5 the author has presented a

thought experiment where it is possible to distinguish

between coordinate systems where “propagation EM” and

“propagation L” hold (see Appendix A). Therefore, this

paper sees no problem in distinguishing “classically station-

ary systems” and “relativistically stationary systems.” It will

be confirmed that the stationary systems treated in the

thought experiment in the following and subsequent sections

are classically stationary systems.

II. RELATIVISTIC SYNCHRONIZATION OF TWO
CLOCKS IN UNIFORM MOTION

Let there be a given stationary rigid rod of length L0 as

measured by a ruler which is stationary, and assume that the

rod is placed along the positive direction of the stationary

system x-axis.

Assume that clocks A and B of the same type are set up

at points A and B on the rear and front end of this rod. Here

clock A will be abbreviated as CA, and clock B as CB.

Suppose a ray of light is emitted in the direction of B

from A at the time tA of CA, reaches and is reflected at B

at time tB of CB, and then returns to A at time tA0 of CA.

Einstein determined that if the following relationships hold,

then the two clocks represent the same time by definition.3

tB � tA ¼ tA0 � tB; (1)

1

2
ðtA þ tA0 Þ ¼ tB: (2)

In this paper, let us adjust the time of CB, and synchron-

ize the times of CA and CB when the rod is stationary.

Also let us indicate CB, whose time was adjusted while

stationary at the beginning, as CB1. (The 1 in B1 signifies

that time was adjusted once. CA is not adjusted, so its indica-

tion is not changed.)

Here, the times of CA and CB are synchronized because

the author wishes to carry the discussion up to the time

adjustment when resynchronizing clocks which have begun

to move at a constant velocity.

Incidentally, Einstein’s relation is also applied when

synchronizing the times of two clocks in the coordinate sys-

tem of a rod moving at a constant velocity.

Suppose a ray of light is emitted in the direction of B

from A at the time t0A of CA, it reaches and is reflected at B at

time t0B of CB, and then returns to A at time t0A0 of CA.

If the following relation holds between the times of the

two clocks at this time, then the times of the two clocks are

the same by definition.

t0B � t0A ¼ t0A0 � t0B; (3)

1

2
ðt0A þ t0A0 Þ ¼ t0B: (4)

Next, assume that the stationary rod has been acceler-

ated, and has attained the constant velocity v (see Fig. 1).

Note that the velocities discussed in this paper will be

assumed to be high velocities to which the STR is

applicable.

In the acceleration stage during this interval, the times

which elapse on CA and CB1 are delayed compared with the

time on the stationary clock.

Viewing from the stationary system, however, the times

which elapse on CA and CB1 are equal in this acceleration

process.

If light propagates isotropically in the coordinate system

where the rod was stationary at the beginning, then CA and

CB1 match absolutely. Also, Einstein’s relation Eq. (3) holds

between the times of CA and CB1 in this stationary system,

and thus relativistically the times of CA and CB1 are

synchronized. However, when this rod begins to move, the

times of the two clocks remain absolutely synchronized, but

it can no longer be said that they are relativistically

synchronized. The reason for this is because, when the rod

begins moving at a constant velocity, the relation in Eq. (3)

FIG. 1. First, the times of clocks, CA and CB, at both ends of a rod are

synchronized while the rod is stationary in a classically stationary system.

Then the rod begins moving at a constant velocity v. (In this case CB is indi-

cated as CB1.) The adjustment time of CB when synchronizing the times of

CA and CB cannot be predicted.
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no longer holds between the times of CA and CB1. (This is

clear on account of “principle I.”)

Thus the time of CB1 must be readjusted so that the

relation in Eq. (3) holds in the coordinate system of the rod

moving at a constant velocity. (However, this time adjust-

ment is the first and only adjustment in the STR.)

If this time adjustment is not made, CA and CB1 will no

longer be synchronized in the relativistic sense. Therefore,

when the one-way speed of light is measured in that coordi-

nate system, it will not be c (in other words, “principle E”

will not hold).

This readjustment is not performed because time elapses

differently between CA and CB1. It is also not performed

because the clock in the moving system is running slower

than the clock in the stationary system. This time adjustment

is performed because the times of CA and CB1 go out of rela-

tivistic synchronization due to the start of motion by the rod.

(Here, the readjusted CB1 is indicated as CB2).

In the end, this time adjustment is for setting the round-

trip speed of light to c while maintaining “principle I.”

III. ACTUAL ADJUSTMENT TIME FOR
SYNCHRONIZING TWO CLOCKS

In Section II, we defined t0A, t0B, and t0A0 in S0. Let us

assume that tA, tB, and tA0 in S correspond to these times. In

this case, if the time needed for light to travel from A to B is

measured with a clock in S, the result is ðtB � tAÞ seconds.

According to the STR, when viewed from S, the rod con-

tracts by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðv=cÞ2

q
times in the direction of motion. In

addition, when the velocity of light emitted from S0 is seen

from S, it is always constant regardless of the velocity of the

light source (principle I), and thus ðtB � tAÞ is given by the

following equation:

tB � tA ¼
L0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðv=cÞ2

q
c� v

ðsÞ: (5)

If the time needed for light to return from B to A is

measured with the clock in S, and is taken to be ðtA0 � tBÞ
seconds, then

tA0 � tB ¼
L0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðv=cÞ2

q
cþ v

ðsÞ: (6)

However, the denominator on the right side of Eqs. (5)

and (6) does not mean that the speed of light varies depend

on the velocity of the light source.5

According to the STR, the relationship between

ðt0B � t0AÞ and ðtB � tAÞ is

ðt0B � t0AÞ ¼ ðtB � tAÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðv=cÞ2

q
: (7)

If the right side of Eq. (5) is substituted for ðtB � tAÞ in

Eq. (7),

t0B � t0A ¼
L0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðv=cÞ2

q� �2

c� v
(8a)

¼ L0ðcþ vÞ
c2

ðsÞ: (8b)

If, in the same way, the time elapsed on a clock in S0 while

light returns from B to A ðt0A0 � t0BÞ is measured by an

observer in S,

t0A0 � t0B ¼
L0ðc� vÞ

c2
ðsÞ: (9)

If we set t0A ¼ 0 to simplify the equation, then the following

value is obtained from Eqs. (8b) and (9):

1

2
t0A0 ¼

1

2
t0B � t0A
� �

þ t0A0 � t0B
� �� �

(10a)

¼ 1

2

L0ðcþ vÞ
c2

þ L0ðc� vÞ
c2

	 

(10b)

¼ L0

c
ðsÞ: (10c)

When light travels from A to B in S0, an observer in S
determines that L0ðcþ vÞ=c2 seconds have passed on the

clock in S0. However, when light departing from A at t0A ¼ 0

arrives at B, the time on CB1 is L0=c seconds. Since

L0ðcþ vÞ=c2 > L0=c, there is no contradiction if the time on

CB1 is delayed compared with the time on CA. Now, if we let

Dt0B1 be the adjustment time for CB1,

Dt0B1 ¼
L0ðcþ vÞ

c2
� L0

c
(11a)

¼ L0v

c2
ðsÞ: (11b)

If an observer in S0 delays the time on CB1 by L0v=c2

seconds, then the relationship in Eq. (3) will hold in this

coordinate system. As a result, “principle E” will hold in this

coordinate system.

However, “principle E,” which is specific to the STR,

has the problem that it cannot survive as a principle unless

the times of CA and CB are synchronized each time the

velocity of the coordinate system changes.

IV. ADJUSTMENT OF CLOCK TIME NECESSARY
FOR ENSURERING THE “PRINCIPLE OF THE
CONSTANCY OF THE SPEED OF LIGHT E”

The velocity addition law in the STR is given by the fol-

lowing equation:

u ¼ vþ w

1þ vw

c2

: (12)

Here, v is the velocity of the moving system S0 measured

from the stationary system S, and w is the velocity of another

moving system S00 measured from S0. Also, u is taken to

be the velocity S00 measured by an observer in S. (The
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movement directions of S0 and S00 are taken to be the positive

direction of the x-axis of the stationary system. In this paper,

the stationary system S is abbreviated S, the moving system

S0 is abbreviated S0, and the moving system S00 is abbreviated

S00.)
Now, consider the case where two rods are placed paral-

lel with the x-axis in the stationary system. (The two rods

will be distinguished as rod 1 and rod 2.) Here, the clocks at

each end of rod 1 will be C1A and C1B, and the clocks at

each end of rod 2 will be C2A and C2B. It is assumed that the

times of C1A and C1B, as well as C2A and C2B are synchron-

ized when the clocks are at rest. (Once their times have been

adjusted, C1B will be indicated as C1B1, and C2B will be indi-

cated as C2B1.)

Next, consider the case when rod 1 begins to move at the

constant velocity v, and at the same time rod 2 begins to

move at the constant velocity v0 in the positive direction of

the x-axis of the stationary system. (However, it is assumed

here that v< v0. Also, let the coordinate system of rod 1 be

S01, and let the coordinate system of rod 2 be S02.) When these

rods begin moving at constant velocity, the times of the

clocks must be readjusted.(see Fig. 2) If the adjusted time of

C1B1 is assumed to be Dt01B1, and the adjusted time of C2B1 is

assumed to be Dt02B1, then

Dt01B1 ¼
Lv

c2
; Dt02B1 ¼

Lv0

c2
: (13)

Here, C1B1 after time adjustment the second time is indi-

cated C1B2, and similarly, C2B1 is indicated C2B2.

Now, the relativistic velocity wr is measured using these

adjusted clocks in the coordinate systems of the two rods. As

a result, it becomes possible for an observer in the stationary

system to apply the following equations as the velocity addi-

tion law in the STR

u ¼ vþ w1r

1þ vw1r

c2

; u0 ¼ v0 þ w2r

1þ v0w2r

c2

: (14)

Here, w1r signifies the relativistic velocity measured in

S01, and w2r the relativistic velocity measured in S02. (The

clocks used to measure w1r are C1A and C1B2, and the clocks

used to measure w2r are C2A and C2B2.)

Next, consider the case where rod 1, moving at constant

velocity v, is accelerated until its velocity becomes v0, and

then it continues moving at a constant velocity (see Fig. 3).

In order to measure the relativistic velocity wr in the

coordinate system of the rod whose velocity was changed

from v to v0, the time of C1B2 must be readjusted so that C1A

and C1B2, which were synchronized in S01, are synchronized

in S02.

In this case, it is enough to set back the time of C1B2 by

ðDt02B1 � Dt01B1Þ(s). This is the second adjustment since the

rod started moving, and the third adjustment including that

made when the rod was stationary. (After the time adjust-

ment, C1B2 is indicated as C1B3.)

When this situation is viewed by an observer in the sta-

tionary system, the time difference between C2A and C2B2 is

equal to the time difference between C1A and C1B3.

By making this time adjustment, it becomes possible to

measure the relativistic velocity wr in the coordinate system

of rod 1, which has reached velocity v0.
What the author wishes to point out as an unnatural time

adjustment is this third time adjustment. When the rod

FIG. 2. The time adjustments are Dt01B1 and Dt02B1 for C1B1 and C2B1 which

move at the constant velocities v and v0 with respect to the classically station

system. The coordinate systems of Rod 1 and Rod 2 acquire the status of rel-

ativistic stationary systems due to performing this time adjustment.

FIG. 3. If Rod 1 is accelerated and its velocity is changed from v to v0,
then the time of C1B2 must be delayed further by Dt01B2. If this time adjust-

ment is not performed, it will be impossible for the coordinate system of the

rod whose velocity was changed to maintain its status as a relativistic sta-

tionary system.

194 Physics Essays 27, 2 (2014)



changes its velocity in the coordinate system of the rod, time

adjustment of the clocks must be repeated. If this time

adjustment is not performed in the moving system, then

“principle E” will not hold in the moving system. In addi-

tion, an observer in the moving system will not be able to

measure the relativistic velocity wr using the two clocks. As

a result, it will be impossible for an observer in the stationary

system to apply the velocity addition law of the STR.

Normally, with the STR, thought experiments have not

been taken this far, and thus this problem did not arise.

Adjusting clocks is not a problem in a simple thought

experiment, but actually doing this over and over would be a

very troublesome task. Now, let w be the velocity of S00

measured using CA and CB, synchronized at the beginning

when the rod was stationary. If this w is used, what sort of

velocity addition law will an observer in the stationary sys-

tem derive?

V. CLASSICAL VELOCITY ADDITION LAWS
DERIVED FROM THE LORENTZ PERSPECTIVE

Now let us consider a situation where, in addition to

CB1, another clock CB2 of the same type as CB1 but with

time set L0v=c2 seconds different from CB1 is placed at

the front end of the rod treated in the thought experiment in

Section III.

If the time needed for an object, which moves from A in

the movement direction of the rod starting at t0A ¼ 0, to reach

B, is measured with CB1, it is measured as t0B1. If it is meas-

ured with CB2, it is measured as t0B2.

Here, if we let w be the velocity derived from t0B1, and wr

be the relativistic velocity derived from t0B2, then w and wr

are given by the following equations:

w ¼ L0

t0B1

; wr ¼
L0

t0B2

: (15)

Taking into account Eq. (11b), there is the following

relationship between t0B1 and t0B2:

t0B1 ¼ t0B2 þ
L0v

c2
: (16)

From Eqs. (15) and (16), we can derive

L0

w
¼ L0

wr

þ L0v

c2
: (17)

This leads to the following relationship between w and

wr:

w ¼ wr

1þ vwr=c2
: (18)

Incidentally, in this paper wr is used instead of w in Eq. (12),

and thus Eq. (12) becomes as follows:

u ¼ vþ wr

1þ vwr=c2
: (19)

Also, Eq. (19) can be rewritten as follows:

u ¼ v c2 þ vwrð Þ þ wrc
2 � v2wr

c2 þ vwr

(20a)

¼ vþ wr 1� v2=c2ð Þ
1þ vwr=c2

: (20b)

Here, if the right side of Eq. (18) is compared with the sec-

ond term of Eq. (20b), then u becomes as follows:

u ¼ vþ w 1� v2

c2

� �
: (21)

This is the velocity addition law written using w in Eq.

(18) in place of wr in Eq. (19).

According to Einstein and Lorentz, the time which elap-

ses in S0 while a time of 1 s elapses in S is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðv=cÞ2

q
(s).

Therefore, if an observer in S looks at an object which moves

w (km) in S0 while 1 s elapses in S0, it will only move

w
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðv=cÞ2

q
(km) while 1 s elapses in S. In addition, a rod

which moves at a constant velocity v will contractffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðv=cÞ2

q
times in the direction of motion.

Therefore, if the velocity of an object which moves w
(km) in 1 s in S0 is measured from S, the result will be

w 1� v2=c2ð Þ (km/s).

If we set wr¼ c in Eq. (18), then w will be the speed of

light measured using CB1. If now we let this speed be wc,

then

wc ¼
c2

cþ v
: (22)

The speed of light in this case does not match c, but this

does not mean there is a contradiction here between

“principle I” and “principle II.” (However, in this case

“principle E” does not hold.)

If wc in Eq. (22) is substituted for w in Eq. (21),

u ¼ vþ c2

cþ v
1� v2

c2

� �
¼ c: (23)

This equation means that the speed of light does not

depend on the velocity of the light source.

Next, if the velocity w of an object measured in S0 is

expressed as a times the speed of light wc (with 0 < a � 1),

then

u ¼ vþ ac2

cþ v
1� v2

c2

� �
(24a)

¼ vþ a c� vð Þ; 0 < a � 1: (24b)

u � c holds in Eqs. (21) and (24b), and this matches

with the results of experiment.

Incidentally, when deriving Eqs. (21) and (24b), a strict

distinction was made between the stationary system and

moving system, Therefore in these equations, 1� v2=c2ð Þ is

not something that is first derived in the STR, and is
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permissible for Lorentz. 1� v2=c2ð Þ is a conclusion derived

if an observer in the stationary system applies “principle I”

to the moving system (coordinate system of the rod), and

assumes “principle II” in the coordinate system of the rod.

Here, there is no need to carry the assumption as far as

“principle E,” which acts as the foundation of the STR (see

Appendix B).

VI. CONCLUSION

The established view regarding the velocity addition law

is that Eq. (19) is correct. However, this paper concludes that

the following equations have a reason to exist, and can coex-

ist with Eq. (19).

u ¼ vþ w 1� v2

c2

� �
; 0 < w � c2

cþ v
: (25)

u ¼ vþ a c� vð Þ; 0 < a � 1: (26)

Equations (25) and (26) derived by the author are equa-

tions employing the velocities measured by an observer in

the moving system using CA and CB1.

Equation (25) is derived regarding light as a particle, and

Eq. (26) is derived regarding light as a wave.

On the other hand, the equation of the STR employs

the relativistic velocity wr measured by an observer in the

moving system using CA and CB2. To put it another way, the

velocity addition law using the velocity w measured with CA

and CB1, which are in a state of absolute synchronization, is

given by Eqs. (25) and (26) derived by the author. In con-

trast, Eq. (19) of the STR is an equation using the relativistic

velocity wr measured with CA and CB2, which are in a rela-

tivistically synchronized state. The author has pointed out

that, when velocity is measured in a moving system, the

equation which can be applied by an observer in the station-

ary system differs depending on the sense in which the

clocks used to measure the velocity match.

The historical sequence is that Eq. (19) was derived first,

and Eqs. (25) and (26) in this paper were derived later. How-

ever, logically, the order should be that we derive Eq. (25)

first, and then derive Eq. (19) by substituting the right side of

Eq. (18) for w in Eq. (25).

Previously, when Eqs. (25) and (26) have been presented

as velocity addition laws, they have been considered to be

errors. However, in this paper we conclude that, although

these equations are not as theoretically profound as Eq. (19),

they have greater utility in practical terms than Eq. (19).
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APPENDIX A

It is possible to distinguish, experimentally, between a

stationary system where light propagates isotropically, and a

coordinate system where light propagates anisotropically.5

At the beginning, when the rod is at rest in a coordinate

system where light propagates isotropically, we assume that

the relation in Eq. (1) holds between the times of clocks CA

and CB at the ends of the rod.

Next, when this rod begins to move at a constant veloc-

ity v relative to the stationary system, the times of CA and

CB1 must be synchronized again. At this time, if we let Dt0B
be the time by which the time of CB1 at the front of the rod is

delayed, then Dt0B takes the following value:

Dt0B1 ¼
Lv

c2
ðsÞ: (A1)

What would happen if light propagated anisotropically

in the coordinate system where the rod was at rest at the

beginning?

If the rod begins to move at a constant velocity v relative

to the stationary system, then Eq. (A1) will not hold. That is,

Dt0B1 6¼
Lv

c2
ðsÞ: (A2)

Thus, by using the second adjustment time of the time

of CB, it is possible to predict whether or not light propaga-

tion in the coordinate system where the rod was originally at

rest is isotropic. (In other words, there is a thought experi-

ence which can distinguish between a classically stationary

system and a relativistically stationary system.)

Due to the above conclusion, there will naturally be

some who point out that this is a breakdown of the “principle

of relativity.” However, the author is convinced that the

cause of Eq. (A2) is that there is an unknown velocity vector

accompanying the coordinate system where the rod was at

rest at the beginning.

APPENDIX B

“Principle E” becomes necessary when measurement is

done from the opposite standpoint.

Here, we consider the case where the observer of rod S0

moving at a constant speed measures the length of rod S

placed on the x-axis in system S.(It is assumed that rod S and

S0 are of the same type, and have the same length when at

rest.)

Let us measure, from S, the time it takes for light emit-

ted at a certain time from a light source at the center of the

rod S0, to arrive at the rear end A and front end B of rod S0.
Letting tA be the time it takes the light to arrive at A, and tB
the time it takes the light to arrive at B,

tA ¼
1

c
L0

2ðcþ vÞ ; (B1)

tB ¼
1

c
L0

2ðc� vÞ ; however; c ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðv=cÞ2

q : (B2)

Next, when the travel distance ctA for light to arrive at A is

measured from S,

ctA ¼
c

c
L0

2ðcþ vÞ : (B3)
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Also, the travel distance ctB for light to arrive at B is

ctB ¼
c

c
L0

2ðc� vÞ : (B4)

Therefore, the length of the rod S0 read off from the

x-axis of S at the same time in S0 by observers A and B at

both ends of the rod becomes the sum of (B3) and (B4), and

hence

ctA þ ctB ¼ cL0: (B5)

Thus, the observer in S0 obtains the following value as the

ratio of the length of rod S0 and rod S.

Length of rod in S0 : Length of rod in S ¼ cL0 : L0: (B6)

Next, let us still apply the “principle of relativity” to

these two coordinate systems, and assume that S and S0 are

equivalent. In this case, an observer in S0 cannot recognize the

physical changes in his own coordinate system, and thus he

determines, based on (B6) that rod S has contracted. That is,

cL0 : L0 ! 1 :
1

c
: (B7)

The above considerations show that there are two types

of Lorentz contraction, as indicated below.

Contraction I: Contraction when the length of the rod in

S0 treated in Section V is measured from S. Contraction in

this case is true contraction, where the rod itself actually

contracts.

Contraction II: Contraction (B7) when the observer in

coordinate system S0 regards his own system as stationary,

and measures the length of a rod placed on the x-axis in S.

This contraction is based on two causes: true contraction of

the moving rod (contraction I) and the relativity of same

time in S0 introduced by Einstein.

As indicated above, the fact that the two inertial systems

are equivalent in the STR means that the same measurement

values will be obtained whether measurements are taken

from inertial system S or S0.

Both Einstein and Lorentz had the same opinion that

the length of a rod in S0 contracts when observed from S.

However, Lorentz did not recognize the need for further syn-

chronization if CA and CB were synchronized when they

were stationary.

Therefore, an observer in S0 with the standpoint of Lor-

entz obtains the following value as the ratio of the lengths of

the two rods.

Length of rod in S0 : Length of rod in S

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðv=cÞ2

q
: 1 ¼ 1 : c: (B8)

If the length of a rod in a stationary system is measured

from S0 moving at a constant velocity, then the rod in S is

judged to be longer. A result like this is obtained because

Lorentz compared the lengths of the two rods from the stand-

point of reality.

Even if it is assumed that the two inertial systems are

equivalent from the standpoint of measurement values, they

cannot be regarded as the same when discussing physical

quantities from the standpoint of reality.

Incidentally, S and S0 are equivalent in the STR, and

thus it is unacceptable for there to be different causes of rod

contraction. Therefore, the STR does not go as explain the

reasons why the rod contracts.

The assumption of Contraction II can be regarded as an

interpretation used when physicists who support Lorentz’s

view of nature have attempted to somehow explain space

contraction in the STR.
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