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Abstract: The special theory of relativity (STR) does not describe physical laws pertaining to

objective reality. It is a theory that predicts and explains the values of physical quantities measured

using two synchronized clocks. When developing the STR, Einstein asserted that there is no need

to introduce concepts such as the ether or velocity vectors, and he later denied their existence.

However, through a discussion from the standpoint of real existence, this paper points out that

there are cases where there is a velocity vector attached to an inertial system, and it presents an

equation determining that vector’s size. VC 2015 Physics Essays Publication.

[http://dx.doi.org/10.4006/0836-1398-28.3.345]

Résumé: La théorie de la relativité restreinte n’est pas celle qui décrit les lois physiques en

rapport avec la réalité objective: elle estime et explique la valeur de la quantité physique mesurée

grâce à deux horloges synchronisées. Lorsqu’Einstein élabore cette théorie, il affirme qu’il n’est

pas nécessaire d’introduire les concepts d’éther ou de vecteur-vitesse, et réfute par la suite leur

existence. Cependant, notre but principal est ici de montrer qu’en réalité, un système d’inertie peut

être accompagné d’un vecteur-vitesse, et de présenter une formule en définissant la grandeur.

Key words: Special Theory of Relativity; Velocity Addition Law; Relativistic Synchronization of Clocks; Relativistically

Stationary System; Velocity Vector.

I. INTRODUCTION

At the end of the 19th century, most physicists were

convinced of the existence of ether as a medium that

propagates light. Further, they thought ether to be

“absolutely stationary.”

Michelson and Morley attempted to detect Earth’s

motion relative to this luminiferous ether, i.e., the absolute

velocity. However, they failed to detect the expected effect.1

To explain this experimental result, Michelson and Lor-

entz developed the following interpretations:

(1) Michelson’s interpretation: The reason why the

expected result was not detected in the experiment is

that the ether is stationary relative to the moving earth

(i.e., the ether is moving together with the earth).

(2) Lorentz’s interpretation: The reason why the ether

could not be detected even though it exists is because

the length of the earth contracts by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðv=cÞ2

q
times

in the direction of motion.2

However, in his special theory of relativity (STR) pub-

lished in 1905, Einstein insisted that physics does not require

an “absolutely stationary system” provided with special

properties, and that there be no such things as “specially

favored” coordinate systems to permit the introduction of the

ether idea.3

Einstein’s aim at the time was not to explain, like

Lorentz and Poincaré, the reason why the expected results

were not observed in the Michelson–Morley experiment, but

to instead derive a transformation between coordinate

systems in order to resolve the asymmetry apparent in elec-

tromagnetism. However, for physicists at that time, the ether

was a reality, not a concept or hypothesis.

When Einstein developed the STR, he assumed the

“principle of relativity” and the “principle of the constancy

of the speed of light.” The latter includes the following two

principles.

“Any ray of light moves in the ‘stationary’ system of

co-ordinates with the determined velocity c, whether the ray

be emitted by a stationary or by a moving body.”4

“Let a ray of light start at the ‘A time’ tA from A toward

B, let it at the ‘B time’ tB be reflected at B in the direction of

A, and arrive again at A at the A time t0A.

In agreement with experience, we further assume the

quantity

2AB

t0A � tA

¼c;

to be a universal constant—The velocity of light in empty

space.”5

In this paper, we distinguish between the former princi-

ple as the “principle of the constancy of the speed of light I”

and the latter principle as the “principle of the constancy of

the speed of light II.” The principle of the constancy of the

speed of light I asserts that the speed of light in vacuum does

not depend on the speed of the light source. The principle of

the constancy of the speed of light II asserts that the speed of

light calculated from the round-trip travel time is constant.a)koshun_suto129@mbr.nifty.com
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Therefore, if the principle of the constancy of the speed of

light I is taken into account, it is impossible to say with

certainty based on the principle of the constancy of the speed

of light II that the round-trip (one way) speed of light is c.

Next, let us check these ideas of Michelson and Lorentz

regarding the speed of light.

“Principle of the constancy of the speed of light M” (a
priori isotropic propagation M): Propagation of light pre-

dicted by Michelson (“M” stands for Michelson). According

to the principle of the constancy of the speed of light M, light

propagates isotropically in an a priori sense. Therefore, an

observer in a stationary system determines that the times

when light emitted from a light source at the origin of the

x-axis arrives at clocks positioned at the points x¼6L are

absolutely the same times. Also, in this stationary system,

the speed of light on both the outward and return paths is c.

This paper defines a “Michelson’s stationary system” to

mean a coordinate system where the principle of the con-

stancy of the speed of light M is valid.

The Michelson’s stationary system does not necessarily

have to be an “absolute stationary system.” This paper does

not regard it as a problem even if two inertial systems with a

relative speed together form the Michelson’s stationary sys-

tem. This is because there is no theory which prohibits that.

“Principle of the constancy of the speed of light L”

(anisotropic propagation of light L): Propagation of light pre-

dicted by Lorentz (“L” stands for Lorentz). An observer in a

stationary system applies the principle of the constancy of

the speed of light I to a system moving at constant velocity

relative to the stationary system. However, an observer in a

moving system recognizes that the principle of the constancy

of the speed of light II is valid, even in his own system, but

he determines that the propagation of light is anisotropic. In

other words, the average speed calculated from the round-

trip travel time of light is c, but the speed of light is not c on

either the outward or return path. This paper defines a

“Lorentz’s moving system” to mean a coordinate system

where the principle of the constancy of the speed of light L

is valid.

The reason why the speed of light is not c is the velocity

vector attached to the inertial system.

II. RELATIVISTIC SYNCHRONIZATION OF TWO
CLOCKS IN A COORDINATE SYSTEM MOVING AT
CONSTANT VELOCITY

Let there be a given stationary rigid rod of length L0 as

measured by a ruler which is stationary, and assume that the

rod is placed along the positive direction of the stationary

system x-axis.

Assume that clocks A and B of the same type are set up

at points A and B on the rear and front end of this rod. Here,

clock A will be abbreviated as CA, and clock B as CB.

Suppose a ray of light is emitted in the direction of B

from A at time tA of CA, reaches and is reflected at B at time

tB of CB, and then returns to A at time tA0 of CA. Einstein

determined that if the following relationships hold between

these two times, then the two clocks represent the same time

by definition4

tB � tA ¼ tA0 � tB; (1)

1

2
ðtA þ tA0 Þ ¼ tB: (2)

In this paper, let us adjust the time of CB and synchron-

ize the times of CA and CB when the rod is stationary.

Also let us indicate CB, whose time was adjusted while

stationary at the beginning, as CB1. (The 1 in B1 signifies

that time was adjusted once. CA is not adjusted, so its indica-

tion is not changed.)

Here, the times are synchronized when the two clocks

are stationary because the author wishes to carry the discus-

sion up to the time adjustment when performing synchroni-

zation later.

Next, assume that the stationary rod has been accelerated

and has attained the constant velocity v (see Fig. 1). Note

that the velocities of the rod discussed in this paper will be

assumed to be high velocities to which the STR must be

applied.

When this rod begins to move, the times of the two

clocks remain absolutely synchronized, but it can no longer

be said that they are relativistically synchronized. The reason

for this is because, when the rod begins moving at a constant

velocity, the relation in Eq. (3) no longer holds between the

times of CA and CB1. (This is clear on account of the princi-

ple of the constancy of the speed of light I.)

Suppose a ray of light is emitted in the direction of B

from A at the time t0A of CA, reaches and is reflected at B at

time t0B of CB, and then returns to A at time t0A0 of CA. (The 0

mark on t0 signifies a moving system.)

If the following relation holds between the times of the

two clocks at this time, then the times of the two clocks are

the same by definition

t0B � t0A ¼ t0A0 � t0B; (3)

1

2
ðt0A þ t0A0 Þ ¼ t0B: (4)

FIG. 1. A rod is moving at a constant velocity v relative to stationary sys-

tem. Clocks A and B are set up at A and B at each end of this rod, and the

times of each of these clocks are synchronized while the system is

stationary.
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Therefore, if a rod which was stationary begins moving

at a constant velocity, then the time CB1 must be adjusted

again so that the relationship in Eq. (3) holds between the

times CA and CB. Due to this operation, the speed of light on

the outward and return paths measured in the moving system

of the rod is measured as c on both paths. (At this time, the

indication of clock B is changed from CB1 to CB2.)

When the above point is taken into account, the principle

of the constancy of the speed of light, as conceived by

Einstein, becomes as follows.

“Principle of the constancy of the speed of light

E” (relativistically isotropic propagation E): Even if

“anisotropic propagation of light L” holds in a coordinate

system, if the times of two clocks are synchronized within

that coordinate system, then the propagation of light in the

coordinate system will be isotropic in the relativistic sense.

Also, the round-trip (one way) speed of light will be meas-

ured as c. As a result, all inertial systems will be equiva-

lent, and the debate regarding identification of “a priori
isotropic propagation M” and anisotropic propagation of

light L will come to an end. Einstein conceived of a new

principle, the principle of the constancy of the speed of

light E, which integrates these two types of propagation,

and introduced that principle to physics. In this paper, a

“relativistically stationary system” is defined as a coordi-

nate system in which light propagates isotropically in the

relativistic sense.

This principle of the constancy of the speed of light E is

a principle unique to the STR. Let us assume that the

velocity of the coordinate system of a rod moving at constant

velocity has changed and shifted to a different motion at con-

stant velocity. Then the times CA and CB1, which were

synchronized beforehand, are no longer the same time from

the standpoint of relativity theory. Thus, in order to syn-

chronize the two clocks again, it is necessary to adjust the

time of clock B. (After the time adjustment, clock B

becomes CB2.) If the coordinate system is shifted once again

to a different motion at constant velocity, adjustment of the

clock’s time must be repeated. (After the time adjustment,

clock B becomes CB3.) If this adjustment is not performed,

the speed of light will not be c on the outward and return

paths. Ultimately, the principle of the constancy of the speed

of light E is an artificial principle which cannot continue to

exist without human assistance.6

However, if two clocks in an inertial system are

synchronized using the method of Einstein, then even in

the Lorentz’s moving system the speed of light is measured

as c on both the outward and return path, just as in the

Michelson’s stationary system.

As a result, both the Michelson’s stationary system

and the Lorentz’s moving system fall under the heading of a

relativistically stationary system, and it is impossible to

experimentally identify the two.

However, manipulation of the clock based on

Einstein’s method does not result in disappearance of the

velocity vector which was initially attached to the Lorentz’s

moving system. Einstein completed the STR without touch-

ing on the whether the velocity vector exists as a real

entity.

III. TIME THAT IS ACTUALLY ADJUSTED IN
SYNCHRONIZATION OF THE TWO CLOCKS

Consider the case where the rod, placed in a stationary

system in Section II, begins to move at a constant velocity v
with respect to this stationary system. However, in this case,

assume that the stationary system is the Michelson’s station-

ary system.

In Section II, we defined t0A, t0B, and t0A0 in S0. Let us

assume that tA, tB, and tA0 in S correspond to these times.

Incidentally, when the time needed for light emitted

from A in S0 to travel from A to B is measured with the clock

in S, the result is ðtB � tAÞ s.

According to the STR, when viewed from S, the rod con-

tracts by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðv=cÞ2

q
times in the direction of motion. In

addition, when the velocity of light emitted from S0 is seen

from S, it is always constant regardless of the velocity of the

light source, and thus ðtB � tAÞ is given by the following

equation:

tB � tA ¼
L0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðv=cÞ2

q
c� v

ðsÞ: (5)

If the time needed for light to return from B to A is

measured with the clock in S and is taken to be ðtA0 � tBÞ s,

then

tA0 � tB ¼
L0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðv=cÞ2

q
cþ v

ðsÞ: (6)

However, the denominator on the right hand side of

Eqs. (5) and (6) does not mean that the speed of light varies

depend on the velocity of the light source.7

According to the STR, the relationship between

ðt0B � t0AÞ and ðtB � tAÞ is

t0B � t0A ¼ ðtB � tAÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðv=cÞ2

q
: (7)

If the right hand side of Eq. (5) is substituted for

ðtB � tAÞ in Eq. (7),

t0B � t0A ¼
L0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðv=cÞ2

q� �2

c� v
; (8a)

¼ L0ðcþ vÞ
c2

ðsÞ: (8b)

If, in the same way, the time elapsed on a clock in S0

while light returns from B to A ðt0A0 � t0BÞ is measured by an

observer in S

t0A0 � t0B ¼
L0ðc� vÞ

c2
ðsÞ: (9)

If we set t0A ¼ 0 to simplify the equation, then the fol-

lowing value is obtained from Eqs. (8b) and (9):

1

2
t0A0 ¼

1

2
t0B � t0A
� �

þ t0A0 � t0B
� �� �

; (10a)

Physics Essays 28, 3 (2015) 347



¼ 1

2

L0ðcþ vÞ
c2

þ L0ðc� vÞ
c2

	 

; (10b)

¼ L0

c
ðsÞ: (10c)

When light travels from A to B in S0, an observer in S
determines that L0ðcþ vÞ=c2 s have passed on the clock in

S0. However, when this light which left A at t0A ¼ 0 reaches

B, by definition, the time shown on clock B must be L0=c s.

However, since L0ðcþ vÞ=c2 > L0=c, the time on clock

B must be later than the time on clock A to resolve this dis-

crepancy. Thus, if the time adjustment to actually make the

time on clock B later is Dt0B, it should be possible to take the

difference between the two as this time. Namely,

Dt0B ¼ t0B � t0A
� �

� 1

2
t0A0 ; (11a)

¼ L0ðcþ vÞ
c2

� L0

c
; (11b)

¼ L0v

c2
sð Þ: (11c)

If an observer in S0 delays the time on clock B by L0v=c2

s, then the relationship in Eq. (3) will hold in this coordinate

system.

This inertial system that is moving at a constant velocity

becomes a stationary system in the sense of the theory of

relativity.

IV. METHOD OF IDENTIFYING THE MICHELSON’S
STATIONARY SYSTEM OR THE LORENTZ’S
MOVING SYSTEM

The velocity addition law in STR is given by the follow-

ing equation:

u ¼ vþ w

1þ vw

c2

: (12)

Here, v is the velocity of the moving system S0 measured

from the stationary system S, and w is the velocity of another

moving system S00 measured from S0. Also, u is taken to be

the velocity of S00 measured by an observer in S. (The move-

ment directions of S0 and S00 are taken to be the positive

direction of the x-axis of the stationary system. In this paper,

the stationary system S is abbreviated S, the moving system

S0 is abbreviated S0, and the moving system S00 is abbreviated

S00.)
Now, consider the case where two rods are placed in the

Michelson’s stationary system (the two rods will be distin-

guished as rod 1 and rod 2) (see Fig. 2).

On rod 1, clock A will be indicated as C1A and clock B

will be indicated as C1B. (In C1A, 1 indicates rod 1, and A

indicates clock A. The same holds for C1B.) The clocks at

both ends of rod 2 will be indicated as C2A and C2B.

It is assumed that the times of C1A and C1B, as well as

C2A and C2B are synchronized when the clocks are at rest.

(Once their times have been adjusted, C1B will be indicated

as C1B1, and C2B will be indicated as C2B1.)

Also, if the stationary system is the Michelson’s station-

ary system, then C1A and C1B1, and C2A and C2B1, match in

an absolute sense by definition.

Next, consider the case when rod 1 and rod 2 begin to

move at the constant velocity, in the positive direction of the

x-axis of the stationary system (velocity of rod 1 is assumed

to be v, and velocity of rod 2 to be u). It is assumed here that

v< u (see Fig. 3).

As has already been pointed out, the times of clock A

and clock B, which were synchronized while at rest, lose

their relativistic synchronization when the rod begins mov-

ing at constant velocity. Thus, it is necessary to adjust the

FIG. 2. Two rods with length L0 are placed parallel to the x-axis of the

Michelson’s stationary system. At this time, the clocks at both ends of the

two rods are synchronized.

FIG. 3. Time adjustment Dt01 of C1B1 moving at a constant velocity v rela-

tive to the Michelson’s stationary system and time adjustment Dt02 of C2B1

moving in the same way at a constant velocity u. By making this time adjust-

ment, the coordinate systems of rod 1 and rod 2 can maintain their status as

relativistically stationary systems.
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times on the B clocks of the two rods so that the times are

synchronized in the coordinate system of the rod which has

begun to move. Here, when clock B on rod 1 is adjusted, the

indication C1B1 is changed to C1B2. Also, when clock B on

rod 2 is adjusted, the indication C2B1 is changed to C2B2. If

the respective time adjustments are taken to be Dt01 and Dt02
then Dt01 and Dt02 are given as follows:

Dt01 ¼ Dt01B1!1B2 ¼
L0v

c2
ðsÞ; (13)

Dt02 ¼ Dt02B1!2B2 ¼
L0u

c2
ðsÞ: (14)

Next, assume that rod 2 does not move from the begin-

ning at the constant velocity u, and instead that it originally

moves at the same constant velocity v as rod 1 (see Fig. 4).

In this case, the time adjustments for C2B1 of rod 2 and

C1B1 of rod 1 both become L0v=c2 s.

After that, rod 2 accelerates until it reaches the constant

velocity u, but as is also evident from Eq. (12), this velocity

u is the velocity at which the relative velocity of the coordi-

nates systems of rod 1 and rod 2 becomes w (see Figs. 5

and 6).

Figure 5 shows observation of the motion of rod 2 from

the Michelson’s stationary system, and Fig. 6 shows observa-

tion from the coordinate system of rod 1.

Here, let us predict, from the Michelson’s stationary sys-

tem, the time adjustment of clock B on rod 2 which has

reached the constant velocity u. If the time adjustment of

clock B is assumed to be Dt03, then the following relation

holds:

Dt01þDt03 ¼ Dt02: (15)

From this, Dt03 becomes

Dt03 ¼ Dt02 � Dt01 ¼ Dt02B2!2B3 ¼
L0 u� vð Þ

c2
ðsÞ: (16)

This time adjustment becomes the third adjustment of clock

B (indication of the clock changes from C2B2 to C2B3).

Next, if the u in Eq. (16) is eliminated by using Eq. (12),

then Dt03 is as follows:

Dt03 ¼
L0w 1� v2

c2

� �

c2 þ vw
ðsÞ: (17)

However, according to the STR, if there are inertial sys-

tems in motion relative to each other, then the only important

velocity is the relative velocity between the coordinate sys-

tems. Therefore, the observer of rod 1 believes that his own

coordinate system is a stationary system, he will regard the

FIG. 4. In this case, at the stage before rod 2 attains the constant velocity

u, it moves at the constant velocity v. The time of clock B on rod 2 is

adjusted at that time. This is the second time adjustment of clock B, so the

indication changes from C2B1 to C2B2. Note that in the thought experiment

performed later, rod 1 is regarded as a stationary system and thus the time

adjustment performed here is the first adjustment.

FIG. 5. Rod 2 is moving at the constant velocity u relative to the Michel-

son’s stationary system. In this case, if the time adjustment Dt03 performed

with clock B of rod 2 is predicted by an observer in the stationary system, it

will be L0ðu� wÞ=c2 s.

FIG. 6. The case when rod 2 in Fig. 5 is viewed by the observer of rod 1.

In this case, the observer of rod 1 believes that his own coordinate system is

a stationary system, and thus he believes that the time adjustment for clock

B of rod 2 is L0w=c2 s. In the case of rod 2 in Fig. 5, the first time adjustment

for clock B is performed while it is at rest in the Michelson’s stationary sys-

tem. In the case of Fig. 6, in contrast, the first time adjustment of clock B is

performed while moving parallel with rod 1. (However, in this case, the time

adjustment cannot be predicted.)
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coordinate system of rod 2 as moving at the constant velocity

w. Also, the observer of rod 1 will predict the following time

as the time adjustment Dt04 performed by clock B of rod 2

Dt04 ¼
L0w

c2
ðsÞ: (18)

In the end, the time adjustment Dt03 of clock B predicted

by an observer in the Michelson’s stationary system does not

match with the time adjustment Dt04 predicted by an observer

in the Lorentz’s moving system.

Now, let us find the size of the component in the x-axis

direction of the unknown velocity vector which causes

this mismatch of Dt03 and Dt04. Assume here that Dt03/Dt04 is a.

That is,

Dt03
Dt04
¼ c2 � v2

x

c2 þ vxw
¼ a; 0 < a < 1: (19)

From this, it is possible to derive a quadratic equation like

the following for vx:

v2
x þ awvx � 1þ að Þc2: (20)

If this equation is solved while taking into account that the

size of vx is positive, then vx is as follows:

vx ¼
�awþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2w2 þ 4 1þ að Þc2

p
2

: (21)

In the clock synchronization proposed by Einstein, it is

enough if the relation in Eq. (3) holds between two clocks,

and the analysis does not go as far as the actual clock time

adjustments. However, this paper has examined the times for

actual adjustment as an issue. As a result, it was found

that times for clock adjustment differ depending on whether

an experiment is carried out in the Michelson’s stationary

system or the Lorentz’s moving system.

The reason why the time adjustment of the clock in the

Lorentz’s moving system differs from the prediction is the

unknown velocity vector attached to the Lorentz’s moving

system. The STR does not describe physical laws pertaining

to an objective reality which exists independently of our own

existence. It is a theory which predicts and explains the val-

ues of physical quantities, such as distance and velocity,

measured using two synchronized clocks.

Through a discussion from the standpoint of real exis-

tence, this paper has pointed out that there are cases where

there is a velocity vector attached to an inertial system.

V. PHYSICAL MEANING OF THE UNKNOWN
VELOCITY VECTOR

This section clarifies the meaning of the unknown

velocity vector.

In quantum mechanics, the motion of the electron in the

hydrogen atom cannot be conceived as a classical motion but

is really a standing wave w, so that w � wj j is symmetric and

time independent all around the proton. Hence, the charge

distribution is perfectly static (no classical motion).

This paper recognizes this point of view of quantum

mechanics. However, in order to clarify the physical mean-

ing of the velocity vector, the author believes a qualitative

explanation using some kind of picture is needed, even if the

region is one where quantum mechanics applies.

In quantum mechanics, light propagates as a wave and is

observed as particles (photons). The principle of the con-

stancy of the speed light I in the Introduction indicates that

light propagates as a wave.

However, in order for light to propagate as a wave, some

medium is necessary to transmit the wave. Also, if it is

assumed that a velocity vector is attached to an inertial sys-

tem, then there must also be a stationary system to be the

starting point of that vector.

At the end of the 19th century, most physicists believed

in a hypothetical substance called the ether. However, at

present, it is not appropriate to assume such a substance as a

medium.

Also, at that time it was thought that the ether is in a

state of absolute rest, but this paper does not accept the exis-

tence of such a special coordinate system.

According to quantum electrodynamics, a vacuum which

transmits electrical force is thought to be filled with opposing

pairs of virtual particles and antiparticles. The vacuum can

transmit light as a wave. Therefore, let us tentatively assume

that these virtual particles are the modern day ether.

Also, according to the “uncertainty principle,” these vir-

tual particles are constantly fluctuating and not at rest, even

when in the lowest energy state.

Here, it is assumed that a vacuum exists even at the deep

layer of a single arbitrary point in the space of an inertial sys-

tem. Next, vectors are used to indicate the velocities at a cer-

tain time of the countless virtual particles which exist at that

point in the vacuum, and then those vectors are combined

into a single vector. (If there is a problem here with the

expression “which exists at the point,” it can be changed to

the more ambiguous expression “which exists in the neigh-

borhood of that point.”)

This combined vector is taken to be the velocity vector

at that point.

Next, a vector is used to indicate the relative velocity

between the combined vector and the inertial system.

If the relative velocity is zero, this inertial system is

determined to be the Michelson’s stationary system.

Conversely, if the relative velocity is not zero, this iner-

tial system is determined to be the Lorentz’s moving system.

However, what determines the direction of this vector is

convention.

In this paper, the author feels it is best treat this vector as

having a starting point in the vacuum and an end point in the

inertial system of physical space.

In this case, the point in the vacuum plays the role of a

stationary system. Also, the vx is the component in the x-axis

direction of the velocity vector attached to the inertial system

regarded as a problem here.

In contrast, if the direction of the vector is taken to

be reversed, this can be interpreted as the blowing of an

“ether drift” with a velocity �vx in the stationary inertial

system.
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VI. CONCLUSION

This paper has demonstrated that it is possible to identify

the Michelson’s stationary system and the Lorentz’s moving

system, even though this identification itself has been

thought to have no significance due to the STR.

In the procedure, it is assumed that the relationship in

Eq. (1) holds between the times of clocks at both ends of a

rod when the rod is stationary at the beginning.

Next, this rod begins to move at a constant velocity w
with respect to stationary system. At this time, the time of

clock B is set later so that the times of the two clocks can be

said to be synchronized in this coordinate system. If the

coordinate system in which the rod was originally at rest is

the Michelson’s stationary system, then the time adjustment

Dt0B of clock B takes the following value:

Dt0B ¼
L0w

c2
ðsÞ: (22)

In contrast, if the coordinate system in which the rod

was originally at rest is the Lorentz’s moving system, then

the time adjustment of clock B does not match with Eq. (22).

The time adjustment Dt0B in the Lorentz’s moving system has

the following value:

Dt0B ¼
L0w 1� v2

x

c2

� �

c2 þ vxw
ðsÞ: (23)

In this way, it is possible to identify the Michelson’s sta-

tionary system or the Lorentz’s moving system based on the

time adjustment of clock B.

The Lorentz’s moving system has an attached unknown

velocity vector. The size of the component of this velocity

vector in the x-axis direction is given by the following

equation.

vx ¼
�awþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2w2 þ 4 1þ að Þc2

p
2

; 0 < a < 1: (24)
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