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The possibility of the existence of an unknown hydrogen atom energy level
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Abstract: It is theoretically possible for a hydrogen atom to have an energy level that is even lower
than the ground state. Assuming that hydrogen atoms with this energy do exist, it would be also
necessary to adjust the Rydberg formula, which predicts the wavelength of photons emitted during
an electron transition. When solving for the photon wavelength using the formula newly derived in
this paper, there is a slight discrepancy between the theoretical value and the experimental value
thought to completely match this wavelength. This paper asserts the possibility of the existence of
a hydrogen atom energy level even lower than the ground state, and concludes that an investigation
of this is necessary. © 2009 Physics Essays Publication. �DOI: 10.4006/1.3177453�

Résumé: D’un point de vue théorique, l’atome d’hydrogène peut prendre des états énergétiques
plus bas que son état fondamental. Si nous supposons que des atomes d’hydrogène à ces états
énergétiques existent, alors des rectifications au niveau de la formule de Rydberg, servant à calculer
les longueurs d’ondes des photons émis lors des transitions électroniques, deviennent nécessaires.
Nous avons introduit dans ce rapport, une nouvelle formule permettant de calculer les longueurs
d’ondes des photons; ces valeurs se situaient alors dans des intervalles extrêmement fines entre les
valeurs théoriques et celles expérimentales. Ainsi, il est d’un grand intérêt de vérifier l’existence
d’atome d’hydrogène se trouvant à des états énergétiques plus bas que son état fondamental.

Key words: Hydrogen Atom; Classical Quantum Theory; Classical Electron Radius; Rydberg Formula; Balmer Series;
Zero-Point Energy.
I. INTRODUCTION

The author’s previous paper asserted that the potential
energy of a hydrogen atom V�r� is equal to the reduction in
an electron’s rest state mass, or −�mec

2, and that this value
has a lower limit1

V�r� = − �mec
2, �1�

0 � V�r� � − mec
2. �2�

Because these two formulas are important formulas in
this paper as well, we revisit the theory used to derive these
formulas.

Let us imagine a single electron that is at rest in a mac-
roscopic space and thus holds only rest mass energy mec

2.
Let us assume that this electron at rest is attracted to the
proton; in other words, it is attracted to the atomic nucleus of
the hydrogen atom.

During this time, when the electron transit to a lower
energy level and kinetic energy �K� increases, an amount of
energy equaling the increased kinetic energy is released out-
side the atom. In order to maintain the law of energy conser-
vation, an energy source is needed to supply the increased
kinetic energy and released photonic energy ��. In this case,
the energy that was originally held by the electron is only the
rest mass energy.
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Therefore, the law of energy conservation in this case
can be written as

− �mec
2 + K + �� = 0, K = �� . �3�

From this and Eq. �A5b�, we are able to determine the fol-
lowing lower limit of the energy of a hydrogen atom �see
Appendix A�:

E =
V�r�

2
�4a�

=−
mec

2

2
�4b�

=− 0.255 MeV. �4c�

Meanwhile, according to the classical quantum theory, the
total energy of a hydrogen atom is

En = −
1

2
� 1

4��0
�2mee

4

�2

1

n2 , n = 1,2, . . . . �5�

Here, n is a principal quantum number.
Equation �5� represents the ground state energy of a hy-

drogen atom when n is 1, and this energy is E1=−13.6 eV.
Here, if we redefine the energy of a hydrogen atom when

its energy is −mec
2 /2 as its “new ground state energy” and

represent this as Eng, then these two energy values have the

following relationship:
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E1

Eng
= −

1

2
� 1

4��0
�2mee

4

�2 � �−
2

mec
2� �6a�

=� e2

4��0�c
�2

�6b�

=�2 �6c�

=5.325 � 10−5, �6d�

where � is a fine structure constant.
This results in a considerable discrepancy in the avail-

able energy according to theory, or Eng, and the actual
ground state energy, or E1.

According to quantum mechanics, the first quantum
number is n=1, but for this paper we assume the presence of
another state where n=0. Then, we use H0 to represent a
hydrogen atom in this state.

I believe that there are three positions that can be taken
here.

�1� The theoretical lower limit for the energy of a hydrogen
atom is −mec

2 /2. However, the minimum energy value
as determined through experimentation is E1 or 	13.6
eV. Therefore, there is no energy state H0 for a hydrogen
atom that is even lower than the ground state.

�2� Because the lower limit value for the energy of a hydro-
gen atom is −mec

2 /2, H0 may exist for hydrogen atoms.
And when considering that earnest discussion on this
problem has not been made in the past, it is not an ap-
propriate scientific attitude to simply assert that H0 does
not exist.

�3� Because the lower limit value for the energy of a hydro-
gen atom is −mec

2 /2, H0 must exist.

I would like to make it clear that this paper is taking
position �2�, not position �3�.

II. FORMULAS CONTAINING ENERGY EVEN LOWER
THAN E1

Even when stating the existence of a lower limit for the
energy of a hydrogen atom, this does not mean that the ex-
istence of this energy level can always be confirmed. We
should determine whether or not this energy level exists by
checking whether the photonic energy expected according to
theory is actually consistent with that obtained through ex-
perimentation.

If we are able to confirm the existence of a hydrogen
atom with −mec

2 /2 energy, it would be relatively simple to
derive a formula that includes this energy level.

Incidentally, even if H0 exists, E=−
 when n=0 as long
as we use Eq. �5�, thereby making it impossible to determine
the energy of H0.

Thus, for this paper, it is necessary to derive a separate
equation that is equivalent to Eq. �5� when n�1 and that
gives a value that is not infinite when n=0.

Incidentally, to derive Eq. �5�, rn from Eq. �A7a� is sub-

stituted into Eq. �A8�.
Also, Bohr used the following quantum condition when
deriving Eq. �A7a� for the orbit radius of a hydrogen atom:

pn � 2�rn = 2�n�, n = 1,2, . . . . �7�

Like Bohr’s quantum condition, the quantum condition
used in this paper cannot be theoretically determined. Thus,
we estimate a new quantum condition to substitute into Eq.
�7� for this paper and use this to derive an energy equation
that also includes Eng.

Next, when deriving the new equation for this paper, it is
necessary to satisfy one of the following conditions for when
n is 0 or 1:

Condition 1:

When n = 0:r0 = rc, when n = 1:r1 � aB. �8�

Condition 2:

When n = 0:r0 = rc, when n = 1:r1 = aB. �9�

Here, rc is the classical electron radius �see Appendix B�.
When deriving an equation that satisfies these condi-

tions, the following two conditions can be predicted as
simple quantum conditions:

pn � 2�rn = 2��� + n��, n = 0,1,2, . . . , �10�

pn � 2�rn = 2��� + �1 − ��n��, n = 0,1,2, . . . . �11�

Multiplying both sides of Eq. �A2� by r2 and using the quan-
tum conditions of Eqs. �10� and �11�, we obtain the following
two equations:

rn =
4��0�2

mee
2 �� + n�2, n = 0,1,2, . . . , �12�

rn =
4��0�2

mee
2 �� + �1 − ��n�2, n = 0,1,2, . . . . �13�

Of these equations, Eq. �12� satisfies condition 1 and Eq.
�13� satisfies condition 2.

Furthermore, when we substitute the radii from Eqs. �12�
and �13� into Eq. �A8�, we obtain the following two equa-
tions:

En = −
1

2
� 1

4��0
�2mee

4

�2

1

�� + n�2 , n = 0,1,2, . . . , �14�

En = −
1

2
� 1

4��0
�2mee

4

�2

1

�� + �1 − ��n�2 , n = 0,1,2, . . . .

�15�

If we then expand the denominators of Eqs. �14� and
�15�, we obtain the following for each of these:

�� + n�2 = �2 + 2�n + n2, �16�

�� + �1 − ��n�2 = �2 + 2��1 − ��n + �1 − ��2n2. �17�

2�n in Eq. �16� is too large to be ignored by n2, and

2��1−��n in Eq. �17� is too large to be ignored by �1
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−��2n2. For this reason, the theoretically derived photonic
energy or wavelength greatly differs from the actual obtained
value.

We therefore abandon the quantum conditions of Eqs.
�10� and �11� in this paper and adopt the following quantum
condition:

pn � 2�rn = 2����2 + n2, n = 0,1,2, . . . . �18�

Since �2=5.325�10−5,

��2 + n2 � n . �19�

Multiplying both sides of Eq. �A2� by r2 and this time using
the quantum condition of Eq. �18�, we obtain the following:

rn =
4��0�2

mee
2 ��2 + n2� �20a�

=aB��2 + n2� �20b�

=rc + aBn2 �20c�

=rc�1 +
n2

�2�, n = 0,1,2, . . . . �20d�

By substituting this rn into Eq. �A8�, we obtain the follow-
ing:

En = −
1

2
� 1

4��0
�2mee

4

�2

1

�2 + n2 �21a�

=− 2��cR
1

�2 + n2 �21b�

=−
2��cR

�2

�2

�2 + n2 �21c�

=−
mec

2

2

1

1 + n2/�2 , n = 0,1,2, . . . . �21d�

Here, R is the Rydberg constant, which is defined by the
following equation:

R =
1

4�
� 1

4��0
�2mee

4

c�3 . �22�

In Eq. �21d�, H0 has limited energy, and this resembles
the harmonic oscillator zero-point energy.

Incidentally, according to Bohr’s classical quantum
theory, the photonic energy emitted during a transition be-
tween energy levels �En−Em� and wavelength � for principal
quantum numbers m and n can be expressed as follows:

En − Em = 2��cR� 1

m2 −
1

n2�,

m � 1, n = m + 1, m + 2, . . . , �23�

1

�
= R� 1

m2 −
1

n2�, m � 1, n = m + 1, m + 2, . . . .
�24�
In this paper, however, we use Eq. �18� instead of Bohr’s
quantum condition.

By doing so, the energy emitted when the principal
quantum number transitions from n to m is expressed as
follows:

En − Em = 2��cR� 1

�2 + m2 −
1

�2 + n2� �25a�

=
mec

2

2
� 1

1 + m2/�2 −
1

1 + n2/�2�,

m � 0, n = m + 1, m + 2, . . . . �25b�

The wavelength � of the photon corresponding to this
energy is expressed as follows:

1

�
= R� 1

�2 + m2 −
1

�2 + n2�,

m � 0, n = m + 1, m + 2, . . . . �26�

III. DISCUSSION

�1� For the Balmer series of a hydrogen atom, m=2. The
German language textbook published by Sommerfeld in
1919 presumes that there is a perfect match between the
Balmer series’ spectral theoretical and experimental values
�see Table I�.

Based on this table, this paper does not disagree with the
conventional view that the theoretical and experimental val-
ues should be considered the same.

However, modern technological advances enable us to
measure the physical constants with more accuracy than was
possible at that time.

The experimental and theoretical values for the photon
wavelength as obtained from Eqs. �24� and �26� are summa-
rized in the following table �see Table II�.

For wavelength value calculations, the following values
were used for R and � from CODATA:2

R = 10 973 731.568 527 m−1, �27�

� = 7.297 352 537 6 � 10−3. �28�

Table II uses experimental values from HyperPhysics,
maintained by Georgia State University.3 Moreover, this
value corresponds to the value of the latest Japanese hand-

TABLE I. Balmer series’ spectral theoretical and experimental values from
Sommerfeld’s textbook.

n
Theoretical value

�nm�
Experimental value

�nm�

3 656.280 656.280
4 486.138 486.133
5 434.051 434.047
6 410.178 410.174
7 397.011 397.006
8 388.909 388.900
9 383.543 383.538
book.
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While the theoretical value and experimental value for
the spectral wavelength of a hydrogen atom are generally
thought to be in complete agreement, the value predicted by
this paper was closer to the experimental value.

Because there is a slight discrepancy between the value
calculated in this paper using Eq. �26� and the theoretical and
experimental values derived using Rydberg formula �24�,
this position of this paper is that the conventional view of
regarding the Balmer series’ spectral theoretical and experi-
mental values should be reconsidered.

�2� A system that performs a simple harmonic oscillation
is called a harmonic oscillator. In quantum mechanics, the
following energy eigenvalue can be obtained for the energy
of such a harmonic oscillator:

En = �n +
1

2
���, n = 0,1,2, . . . . �29�

Here, n is the number of oscillators, and even for a
ground state of n=0, this oscillator is known to have a zero-
point energy of �� /2.

Deriving Eng from Eq. �21d� we obtain −mec
2 /2, and this

paper considers Eng to be an energy that closely resembles
the harmonic oscillator zero-point energy. If we consider Eng

to be zero-point energy, it would not be unusual even if H0

existed; so is there some reason why the existence of a zero-
point energy for a hydrogen atom should be prohibited?

IV. CONCLUSION

This paper could not present proof of the existence of
H0. Therefore, this paper must take the position of �1� or �2�
and, for now, we shall support the position of �2�.

There is no evidence of the existence of H0 as consid-
ered in this paper of being seriously debated during the for-
mulation of quantum theory. As far as can be determined
from papers and writings of the time, physicists appear to
have accepted without doubt that the lowest energy of a hy-
drogen atom is the ground state energy of n=1.

Considering these conditions and the discussion of this
paper, the assertion of this paper, that the existence of H0

TABLE II. Comparison of the theoretical and experimental values of the
spectral wavelength of a Balmer series.

n

Quantum
theoretical value

�nm�

Experimental
value
�nm�

Value predicted
by this paper

�nm�

3 656.112 656.272 656.125
4 486.009 486.133 486.017
5 433.937 434.047 433.943
6 410.070 410.174 410.076
7 396.9074 397.0072 396.9131
8 388.8073 388.9049 388.8128
9 383.4422 383.5384 383.4476
should be re-examined, is supported.
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APPENDIX A

Let us review the energy of an electron inside a hydro-
gen atom. Let us suppose that an atomic nucleus is at rest
because it is heavy, and consider the situation where an elec-
tron �electric charge −e and mass me� orbits at speed v along
an orbit �radius r� with the atomic nucleus as its center. An
equation describing the motion is as follows:

mev
2

r
=

1

4��0

e2

r2 . �A1�

From this, we obtain

1

2
mev

2 =
1

2

1

4��0

e2

r
. �A2�

Meanwhile, the potential energy of the electron is

V�r� = −
1

4��0

e2

r
. �A3�

Since the right side of Eq. �A2� is 	1/2 times the potential
energy, Eq. �A2� indicates that

V�r� = − 2�1

2
mev

2� . �A4�

Therefore, the total electron energy

E = 1
2mev

2 + V�r� �A5a�

=
V�r�

2
�A5b�

=−
1

2

1

4��0

e2

r
. �A5c�

Incidentally, Bohr used the following quantum condition
when deriving Eq. �5�:

pn � 2�rn = 2�n�, n = 1,2, . . . . �A6�

Multiplying both sides of Eq. �A2� by r2 and using the quan-
tum condition of Eq. �A6�, we obtain the following equation:

rn =
4��0�2n2

mee
2 �A7a�

=aBn2, n = 1,2, . . . . �A7b�

Here, aB is the Bohr radius.
If we add the notation n to E and r of Eq. �A5c�, we
obtain the following:
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En = −
1

2

e2

4��0rn
. �A8�

Equation �5� is obtained by substituting rn into Eq. �A7�.
It is a known fact that the reason for using Eq. �A6� is be-
cause it can be used to derive Eq. �5�, the energy of a hydro-
gen atom, and that there is no other basis besides this.

APPENDIX B

When each of the photonic energy and electron’s kinetic
energy reaches mec

2 /2, the electron cannot obtain more ki-
netic energy than this, and it is also unable to decrease its
potential energy. Thus, the following inequality �Eq. �2�� is
true:

0 � V�r� � − mec
2.

Therefore, there exists a minimum value of potential en-

ergy, whereupon the following relationship is established:
− � 1

4��0
� e2

re
= − mec

2. �B1�

The location that satisfies this relationship is the distance
of closest approach re, which indicates how close the elec-
tron comes to the center of the atom. From Eq. �B1�, re is the
following value:

re =
1

4��0

e2

mec
2 �B2a�

=rc. �B2b�

Here, rc is the classical electron radius.
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