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Abstract: When determining the coefficients ai and b of the Dirac equation (which is a relativistic

wave equation), Dirac assumed that the equation satisfies the Klein–Gordon equation. The

Klein–Gordon equation is an equation that quantizes Einstein’s relationship E2 ¼ c2p2 þ E2
0.

Therefore, this paper derives an equation similar to the Klein–Gordon equation by quantizing the

relationship E2
re;n þ c2p2

n ¼ E2
0 between energy and momentum of the electron in a hydrogen atom

derived by the author. By looking into the Dirac equation, it is predicted that there is a relativistic

wave equation, which satisfies that equation, and its coefficients are determined. With the Dirac

equation, it was necessary to insert a term for potential energy into the equation when describing

the state of the electron in a hydrogen atom. However, in this paper, a potential energy term was

not introduced into the relativistic wave equation. Instead, potential energy was incorporated into

the equation by changing the coefficient ai of the Dirac equation. It may be natural to regard the

equation derived in this paper and the Dirac equation as physically equivalent. However, if one of

the two equations is superior, this paper predicts it will be the relativistic wave equation derived by

the author. VC 2011 Physics Essays Publication. [DOI: 10.4006/1.3659280]

Résumé: Lorsqu’on établit les coefficients ai et b de l’équation de Dirac, qui est une équation

d’onde relativiste, Dirac supposa que cette équation satisfaisait l’équation de Klein-Gordon.

L’équation de Klein-Gordon est une version quantifiée de la relation d’Einstein E2 ¼ c2p2 þ E2
0.

Dans cet article, l’auteur est lui aussi arrivé à une équation analogue à celle de Klein Gordon en

effectuant une quantification de la relation énergie-impulsion E2
re;n þ c2p2

n ¼ E2
0 pour l’électron

d’un atome d’hydrogène. En examinant l’équation de Dirac, on prédit qu’il y a une équation

d’onde relativiste qui satisfait celle équation, et les coefficients sont ensuite déterminés. Lorsque

l’on cherche à décrire l’état d’un électron dans un atome d’hydrogène avec l’équation de Dirac, il

est nécessaire d’introduire un terme d’énergie potentielle dans l’équation. Cependant, dans notre ar-

ticle, le terme d’énergie potentielle n’a pas été inséré dans l’équation, mais introduit en changeant

le coefficient ai de l’équation de Dirac. Il est tout à fait naturel de considérer que l’équation dérivée

dans cet article et l’équation de Dirac son physiquement équivalentes. Néanmoins, si une notion de

supériorité devait exister entre les deux équations, l’auteur prévoit que l’équation d’onde relativiste

qu’il a établi surpasse celle de Dirac.
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I. INTRODUCTION

One of the most important relationships in the special

theory of relativity (STR) is as follows:

E2 ¼ c2p2 þ E2
0: (1)

Here, E is the relativistic energy of an object or a particle,

and E0 is the rest mass energy.

Currently, Einstein’s relationship (1) is used to describe

the energy and momentum of particles in free space, but for

explaining the behavior of bound electrons inside atoms,

opinion has shifted to quantum mechanics as represented by

equations such as the Dirac equation.

However, in another paper, while agreeing on the impor-

tance of the Dirac equation, from a perspective of symmetry,

the author poses the following questions: Would an equation

similar to Einstein’s relationship, which holds true in free

space, also hold true in a hydrogen atom? If such an equation

were to hold true, what would it look like?

Then, the author derives the following relationship for a

bound electron in a hydrogen atom:1

E2
re;n þ c2p2

n ¼ E2
0; E0 ¼ mec2: (2)

Here, Ere;n is the relativistic energy of a bound electron in a

hydrogen atom.

In addition, Ere;n was defined classically as follows:2

Ere;n ¼ E0 þ Kn þ VðrnÞ (3a)

¼ E0 þ VðrnÞ=2 (3b)

¼ E0 þ En; n ¼ 1; 2;…; En < 0: (3c)a)koshun_suto129@mbr.nifty.com
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When describing the motion of a bound electron in a hydro-

gen atom, a term must be included in that equation for the

potential energy.

Potential energy is not incorporated into Eq. (2) in a

form which is visible to the eye. However, a quantity corre-

sponding to VðrnÞ is incorporated from the beginning into

Ere;n due to the definition of Eq. (3a).

When establishing the coefficient for the Dirac equa-

tion, a relativistic wave equation, Dirac assumed that this

equation satisfied the Klein–Gordon equation. However, the

Klein–Gordon equation is a quantized equation of Einstein’s

relationship.

Thus, we attempt to derive an equation similar to the

Klein–Gordon equation by quantizing Eq. (2) derived by the

author. Then, the relativistic wave equation satisfying that

equation is predicted, and its coefficients are determined.

II. CONFIRMING THE DIRAC RELATIVISTIC WAVE
EQUATION AND ITS COEFFICIENTS

In preparation for the discussion in the next section, this

section confirms the Dirac relativistic wave equation and its

coefficients by referring to a quantum mechanics textbook.

The fact that when we perform quantization for Eq. (1),

we obtain the following Klein–Gordon equation is evident:

� �h2 @
2

@t2
w ¼ ��h2c2 @2

@x2
1

þ @2

@x2
2

þ @2

@x2
3

� �
wþ m2c4w: (4)

This equation described the wave function in relativistic

terms, but this interpretation was inconsistent with the inter-

pretation according to the more commonly used Schrödinger

equation.

Dirac approached the problem of finding a relativistic

wave equation by starting from the Hamiltonian form is as

follows:3

i�h
@

@t
wðr; tÞ ¼ Hwðr; tÞ: (5)

The simplest Hamiltonian that is linear in the momentum

and mass term is as follows:

H ¼ ca � pþ bmc2: (6)

By substituting this into Eq. (5), we obtain

ðE� ca � p� bmc2Þw ¼ 0: (7)

We also substitute E and p in Eq. (7)

E! i�h
@

@t
; p! �i�hr: (8)

The result is the following quantized expression:

i�h
@

@t
þ i�hca � r � bmc2

� �
w ¼ 0: (9)

Dirac surmised that a correct equation to resolve this short-

coming must take the following form:4

i�h
@

@t
w ¼ �i�hc a1

@

@x1

þ a2

@

@x2

þ a3

@

@x3

� �
þ bmc2

� �
w:

(10)

This is a rewritten form of Eq. (9).

Then, because this equation must satisfy the Klein–-

Gordon equation, Dirac thought that all that was left was to

determine the unknown coefficients ai and b.

Dirac obtained the following for coefficients ai and b:

a1 ¼

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

2
664

3
775 a2 ¼

0 0 0 �i
0 0 i 0

0 �i 0 0

i 0 0 0

2
664

3
775

a3 ¼

0 0 1 0

0 0 0 �1

1 0 0 0

0 �1 0 0

2
664

3
775 b¼

1 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 �1

2
664

3
775: (11)

This coefficient was derived from the following conditions:

a2
i ¼ 1

aiaj þ ajai ¼ 0

aibþ bai ¼ 0

b2 ¼ 1

9>>>=
>>>;
; i; j ¼ 1; 2; 3ði 6¼ jÞ: (12)

Terms that involve the electromagnetic potentials can be

added to Eq. (9) in a relativistic way by making the usual

replacements as follows, where the particle described by the

equation has electric charge e

cp! cp� eA; E! E� eu: (13)

Here, E and p represent the operators of Eq. (8).

In special cases like a central field (in which A¼ 0 and

u are spherically symmetric), because A(r,t)¼ 0, u(r,t)
¼u(r), this enables us to obtain

i�h
@w
@t
¼ Hw;

H ¼ ca � pþ bmc2 þ V: (14)

where V ¼ eu.

Represented in the same style as Eq. (9), we obtain

i�h
@

@t
þ i�hca � r � bmc2 � V

� �
w ¼ 0: (15)

The energies of a hydrogen atom derived from Eqs. (2) and

(15) are compared (see Appendix).

III. NEW RELATIONAL EXPRESSION QUANTIZATION

In this section, we shall attempt to quantize the newly

obtained relationship (2).

Now, when we perform quantization on Eq. (2), we

obtain the following:
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� �h2 @
2

@t2
w ¼ �h2c2 @2

@x2
1

þ @2

@x2
2

þ @2

@x2
3

� �
wþ m2

ec4w: (16)

This equation corresponds to the Klein–Gordon Equation (4)

obtained by quantizing Eq. (1). This paper predicts the rela-

tivistic wave equation, which takes the place of the Dirac

equation, and its coefficients are determined so that the wave

equation satisfies Eq. (16).

To do so, in order to differentiate from the existing Dirac

Equation (10), we assume that the expression derived in this

paper has the coefficients a0i and b

i�h
@

@t
w ¼ �i�hc a01

@

@x1

þ a02
@

@x2

þ a03
@

@x3

� �
þ b0mec2

� �
w:

(17)

Equation (10) was obtained by rewriting Eq. (9), but Eq. (17)

was obtained by rewriting the following equation:

i�h
@

@t
þ i�hca0 � r � b0mec2

� �
w ¼ 0: (18)

Extracting only the operator from Eq. (17), and making an

equation by squaring both sides, we obtain

��h2 @
2

@t2
w ¼ ��h2c2 a01

@

@x1

þ a02
@

@x2

þ a03
@

@x3

� �2
"

�i�hc a01
@

@x1

þ a02
@

@x2

þ a03
@

@x3

� �
b0mec2

�b0mec2i�hc a01
@

@x1

þ a02
@

@x2

þ a03
@

@x3

� �

þb0
2
m2

ec4
i
w: (19)

Since the left side of this equation is the same as the Klein–-

Gordon equation and Eq. (16), the right side should finally

be the same as the right side of Eq. (16).

Next, expanding the right side of Eq. (19), we obtain the

following:

��h2 @
2

@t2
w ¼ ��h2c2 a01

2 @
2

@x2
1

þ a022
@2

@x2
2

þ a023
@2

@x2
3

� ��

��h2c2 a01a
0
2 þ a02a

0
1

� � @

@x1

@

@x2

��h2c2 a02a
0
3 þ a03a

0
2

� � @

@x2

@

@x3

��h2c2 a03a
0
1 þ a01a

0
3

� � @

@x3

@

@x1

�i�hmec3 a01b
0 þ b0

�
a01
� @

@x1

�i�hmec3 a02b
0 þ b0

�
a02
� @

@x2

�i�hmec3 a03b
0 þ b0

�
a03
� @

@x3

þ b0
2
m2

ec4

�
w:(20)

In order to make Eqs. (16) and (20) the same, the coefficients

a0i and b0 must be a 4� 4 matrix satisfying the following

conditions:

a0i
2 ¼ �1

a0ia
0
j þ a0ja0i ¼ 0

a0ib
0 þ b0a0i ¼ 0

b02 ¼ 1

9>>>=
>>>;
; i; j ¼ 1; 2; 3ði 6¼ jÞ: (21)

The solution which satisfies these conditions and is a clean

combination is as follows:

a01 ¼

0 0 0 1

0 0 �1 0

0 1 0 0

�1 0 0 0

2
664

3
775 a02 ¼

0 0 0 i
0 0 i 0

0 i 0 0

i 0 0 0

2
664

3
775

a03 ¼

0 0 1 0

0 0 0 1

�1 0 0 0

0 �1 0 0

2
664

3
775 b0 ¼

1 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 �1

2
664

3
775: (22)

We have thus confirmed that b ¼ b0:
Therefore, Eq. (18) becomes as follows:

i�h
@

@t
þ i�hca0 � r � bmec2

� �
w ¼ 0: (23)

Equation (15) was obtained by inserting a term V into the

Hamiltonian in Eq. (9). On the other hand, Eq. (23) was

obtained by changing the coefficient in Eq. (9) from ai (11) to

a0i (22). The change in this coefficient corresponds to incorpo-

rating potential energy into the Hamiltonian in Eq. (9).

IV. CONCLUSION

The Dirac relativistic wave equation, which describes

the energy of a hydrogen atom, is given as

i�h
@

@t
þ i�hca � r � bmc2 � V

� �
w ¼ 0: (24)

where

a1 ¼

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

2
664

3
775 a2 ¼

0 0 0 �i
0 0 i 0

0 �i 0 0

i 0 0 0

2
664

3
775

a3 ¼

0 0 1 0

0 0 0 �1

1 0 0 0

0 �1 0 0

2
664

3
775 b¼

1 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 �1

2
664

3
775: (25)

Here, rather than changing the Dirac Equation (9) coefficient

that is true in free space, the problem is solved by adding the

term �V to the Hamiltonian.

In this paper, however, we have shown that the energy

of a hydrogen atom can be described by the following equa-

tion as well:
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i�h
@

@t
þ i�hca0 � r � bmec2

� �
w ¼ 0: (26)

where

a01 ¼

0 0 0 1

0 0 �1 0

0 1 0 0

�1 0 0 0

2
664

3
775 a02 ¼

0 0 0 i
0 0 i 0

0 i 0 0

i 0 0 0

2
664

3
775

a03 ¼

0 0 1 0

0 0 0 1

�1 0 0 0

0 �1 0 0

2
664

3
775 b ¼

1 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 �1

2
664

3
775: (27)

Because the Dirac Equation (9) does not include potential

energy, the term V has been newly added in Eq. (15). How-

ever, V is already included within Ere;n in Eq. (2).

Therefore, there is no need to add again the term V to

Eq. (17), which satisfies Eq. (16) derived by quantizing

Eq. (2).

In this paper, the problem is solved not by adding �V to

the Dirac Equation (9) but by changing the coefficient from

ai to a0i:
Incidentally, for methods of handling equations in

quantum mechanics, there are the Schrödinger representa-

tion and the Heisenberg representation. The former of these

calculate time change under a wave function (state), while

the latter calculates using time-dependent operators, and the

states are constant. Equation (23) of this paper and the

existing Eq. (15) stand in contrast to each other like these

two representations.

Taking this into account, it may be natural to regard Eqs.

(23) and (15) as equivalent equations describing the state of

the bound electron in a hydrogen atom. However, if one of

the two equations is superior, this paper predicts that it will

be Eq. (23) derived by the author.

The three reasons for this are as follows:

(1) The equation which served as the point of departure for

deriving Eq. (15) was Eq. (1), but the equation which

served as the point of departure for deriving Eq. (23)

was Eq. (2). Starting from Eq. (2) is believed to be a

valid approach for deriving an equation to describe the

behavior of the bound electron inside an atom.

(2) Equation (23) is simpler than Eq. (15).

(3) The approximate value of the energy of the hydrogen

atom can be derived much more simply from Eq. (2)

than from the Dirac equation.1
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APPENDIX

In the textbook of Schiff, the following eigenvalue for

the energy of a hydrogen atom was obtained by performing

complex calculations based on Eq. (15):

E ¼ mec2 1þ a2

ðsþ n0Þ2

" #�1=2

; n0 ¼ 0; 1; 2;…: (A1)

Additionally, the correct quantum number for Eq. (A1) is

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � a2
p

; n ¼ n0 þ kj j: (A2)

If we now substitute Eq. (A2) into Eq. (A1), and take the

terms of order a4, we obtain

E ¼ mec2 1� a2

2n2
� a4

2n4

n

kj j �
3

4

� �� �
: (A3)

n is the total quantum number, n0 is the radial quantum num-

ber, and jkj can take on positive integer values. Equation

(A3) shows that the energy increases with increasing jkj.
When n= kj j ¼ 1 in Eq. (A3), the contents of the third

term in parentheses on the right side equal 1=4, so we can

rewrite as

En ¼ mec2 1� a2

2n2
� a4

8n4
� � � �

� �
: (A4)

Next, we shall derive the energy of a hydrogen atom from

Eq. (2). First, we can rewrite Eq. (2) as

Ere;n ¼ ðm2
ec4 � c2p2

nÞ
1=2

(A5a)

¼ mec2 1� p2
n

m2
ec2

� �1=2

: (A5b)

Incidentally, in Ref. 1, the author derived the following rela-

tion from Eq. (2) in this paper:

p2
n ¼

a2

n2
� a4

4n4

� �
mecð Þ2: (A6)

Also, because a4 ¼ ð5:325� 10�5Þa2; if we now set

a4=4n4 � 0; Eq. (A6) can be written as

pn �
amec

n
(A7a)

¼ 1

4pe0

� �
mee2

n�h
: (A7b)

However, a here is the following fine structure constant:

a ¼ e2

4pe0�hc
: (A8)
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Then, using the relationship from Eq. (A7a), an approxima-

tion, we obtain

Ere;n � mec2 1� a2

n2

� �1=2

: (A9)

Using the binomial theorem expansion here, we obtain

Ere;n � mec2 1� a2

2n2
� a4

8n4
� � � �

� �
: (A10)

The Dirac equation obtains the energy levels through com-

plex calculations based on Eq. (15). However, we can easily

obtain the energy levels by starting from Eq. (A5b), which

has been derived in previous paper.

The following accurate value is obtained if the value of

Eq. (A6) is substituted for p2
n in Eq. (A5b) without using the

approximation in Eq. (A7a):

Ere;n ¼ mec2 1� a2

n2
þ a4

4n4

� �1=2

(A11a)

¼ mec2 1� a2

2n2

� �
: (A11b)

However, because Eq. (A11b) is not a quantized expression,

the energy value of Eq. (A10) can only be obtained for the

energy values of degenerative states.

If this energy is described with the energy En in classical

quantum theory, then it becomes as follows.

En ¼ � mec2 � Ere;n

� �
¼ � a2mec2

2n2

¼ � 1

2

1

4pe0

� �2 mee4

�h2
� 1

n2
:

(A12)

It is ironic that En matches the accurate value, even though

the energy of a hydrogen atom is found through approxima-

tion in classical quantum theory. This is due to the following

reason.

In classical quantum theory, the following approxima-

tion is used first:

Kn �
p2

n

2me

: (A13)

Next, the following value is obtained if Eq. (A7a), which is

an approximate value, is substituted for pn in this equation:

En ¼ �Kn ¼ �
1

2me

a2m2
ec2

n2
¼ � 1

2

1

4pe0

� �2 mee4

�h2
� 1

n2
:

(A14)

This value matches with Eq. (A12).

In the end, the solution eventually obtained by using

two approximations in classical quantum theory matches the

correct solution.

The task of deriving the energy of the hydrogen atom

from Eq. (23) will be carried out in a separate paper.
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